【題目】已知數(shù)列 的前 項(xiàng)和為 ,并且滿足 , .

(1)求數(shù)列 通項(xiàng)公式;

(2)設(shè) 為數(shù)列 的前 項(xiàng)和,求證: .

【答案】(1) (2)見(jiàn)解析

【解析】試題分析:(1)根據(jù)題意得到, ,兩式做差得到;(2)根據(jù)第一問(wèn)得到,由錯(cuò)位相減法得到前n項(xiàng)和,進(jìn)而可證和小于1.

解析:

(1)∵

當(dāng) 時(shí),

當(dāng)時(shí), ,即

∴數(shù)列 時(shí)以 為首項(xiàng), 為公差的等差數(shù)列.

.

(2)∵

由① ②得

點(diǎn)睛:這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等.

型】解答
結(jié)束】
22

【題目】已知 , 分別是橢圓 )的左、右焦點(diǎn), 是橢圓 上的一點(diǎn),且 ,橢圓 的離心率為 .

(1)求橢圓 的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓 交于不同兩點(diǎn) , ,橢圓 上存在點(diǎn) ,使得以 , 為鄰邊的四邊形 為平行四邊形( 為坐標(biāo)原點(diǎn)).

)求實(shí)數(shù) 的關(guān)系;

)證明:四邊形 的面積為定值.

【答案】(1) (2)①② 四邊形 的面積為定值,且定值為

【解析】試題分析:(1)根據(jù)題意得到, ,橢圓的標(biāo)準(zhǔn)方程為;(2)聯(lián)立直線和橢圓方程得到二次方程,根據(jù)題意得到,由韋達(dá)定理得到P點(diǎn)坐標(biāo),再根據(jù)點(diǎn)在橢圓上得到參數(shù)值關(guān)系;(3先由弦長(zhǎng)公式得到,由點(diǎn)線距得到三角形高度,再根據(jù)四邊形面積公式,進(jìn)而得到定值.

解析:

(1)依題意, ,即 .

,∴

故橢圓的標(biāo)準(zhǔn)方程為

(2)()由 .

設(shè) , ,則 , .

∵四邊形 為平行四邊形.

∴點(diǎn) 坐標(biāo)為

∵點(diǎn) 在橢圓 上,

,整理得

)∵

又點(diǎn) 到直線 的距離為

∴四邊形 的面積

故四邊形 的面積為定值,且定值為 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知AB為圓O的直徑,C,D是圓O上的兩個(gè)點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.

(1)求證:AC是∠DAB的平分線;
(2)求證:OF∥AG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,有兩種方式,甲為投資債券等穩(wěn)健型產(chǎn)品,乙為投資股票等風(fēng)險(xiǎn)型產(chǎn)品,設(shè)投資甲、乙兩種產(chǎn)品的年收益分別為、萬(wàn)元,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),它們與投入資金萬(wàn)元的關(guān)系分別為,,(其中,,都為常數(shù)),函數(shù),對(duì)應(yīng)的曲線,如圖所示

(1)求函數(shù)、的解析式;

(2)若該家庭現(xiàn)有萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線 )的焦點(diǎn)為 ,已知點(diǎn) , 為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足 .過(guò)弦 的中點(diǎn) 作拋物線準(zhǔn)線的垂線 ,垂足為 ,則 的最大值為__________

【答案】1

【解析】設(shè),在三角形ABF中,用余弦定理得到

,

故最大值為1.

故答案為:1.

點(diǎn)睛:本題主要考查了拋物線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義。一般和拋物線有關(guān)的小題,很多時(shí)可以應(yīng)用結(jié)論來(lái)處理的;平時(shí)練習(xí)時(shí)應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用。尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實(shí)現(xiàn)點(diǎn)點(diǎn)距和點(diǎn)線距的轉(zhuǎn)化。

型】填空
結(jié)束】
17

【題目】設(shè) 的內(nèi)角 , , 所對(duì)的邊分別為 , ,且 , .

(1)當(dāng) 時(shí),求 的值;

(2)當(dāng)的面積為 時(shí),求的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,.

(1)證明:面;

(2)求點(diǎn)到平面的距離;

(3)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過(guò)點(diǎn)A作⊙O的切線EP交CB的延長(zhǎng)線于P,∠PAB=35°.

(1)若BC是⊙O的直徑,求∠D的大。
(2)若∠PAB=35°,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線,半徑為2的圓相切,圓心軸上且在直線的上方.

1)求圓的方程

2)過(guò)點(diǎn)的直線與圓交于兩點(diǎn)軸上方),問(wèn)在軸正半軸上是否存在定點(diǎn),使得軸平分若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為奇函數(shù),為偶函數(shù),且

函數(shù)的解析式;

用函數(shù)單調(diào)性的定義證明:函數(shù)上是減函數(shù)

關(guān)于的方程有解,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1.

(1)求二面角A﹣PB﹣C的余弦值.
(2)在線段CP上是否存在一點(diǎn)E,使得DE⊥PB,若存在,求線段CE的長(zhǎng)度,不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案