【題目】在直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,短軸的兩個端點(diǎn)分別為,且,點(diǎn)上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓和圓分別相切于,兩點(diǎn),當(dāng)面積取得最大值時(shí),求直線的方程.

【答案】(Ⅰ) .(Ⅱ) .

【解析】

(Ⅰ) 由,可得;由橢圓經(jīng)過點(diǎn),得,求出后可得橢圓的方程.

(Ⅱ)將直線方程與橢圓方程聯(lián)立消元后根據(jù)判別式為零可得,解方程可得切點(diǎn)坐標(biāo)為,再根據(jù)直線和圓相切得到,然后根據(jù)在直角三角形中求出,進(jìn)而得到,將代入后消去再用基本不等式可得當(dāng)三角形面積最大時(shí),于是可得,于是直線方程可求.

(Ⅰ)由,可得,①

由橢圓經(jīng)過點(diǎn),得,②

由①②得,

所以橢圓的方程為

(Ⅱ)由消去整理得*),

由直線與橢圓相切得,

,

整理得,

故方程(*)化為,即,

解得,

設(shè),則,故,

因此

又直線與圓相切,可得

所以,

所以,

式代入上式可得

,

,

所以,當(dāng)且僅當(dāng)時(shí)等號成立,即時(shí)取得最大值.

,得,

所以直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)對12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查,瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3.由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為.

視覺

視覺記憶能力

偏低

中等

偏高

超常

聽覺記憶

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

1)試確定的值;

2)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的分布列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,動點(diǎn)在橢圓上,的周長為6

1)求橢圓的方程;

2)設(shè)直線與橢圓的另一個交點(diǎn)為,過分別作直線的垂線,垂足為軸的交點(diǎn)為.若四邊形的面積是面積的3倍,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,,,的面積為.

1)求橢圓的方程;

2)設(shè)是橢圓上的一點(diǎn),直線軸交于點(diǎn),直線軸交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若過點(diǎn)可作三條直線與曲線相切,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的導(dǎo)函數(shù),且,則下列說法正確的是___________.

;

②曲線處的切線斜率最小;

③函數(shù)存在極大值和極小值;

在區(qū)間上至少有一個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)廠商在銷售200萬臺某型號手機(jī)時(shí)開展“手機(jī)碎屏險(xiǎn)”活動、活動規(guī)則如下:用戶購買該型號手機(jī)時(shí)可選購“手機(jī)碎屏險(xiǎn)”,保費(fèi)為元,若在購機(jī)后一年內(nèi)發(fā)生碎屏可免費(fèi)更換一次屏幕.該手機(jī)廠商將在這萬臺該型號手機(jī)全部銷售完畢一年后,在購買碎屏險(xiǎn)且購機(jī)后一年內(nèi)未發(fā)生碎屏的用戶中隨機(jī)抽取名,每名用戶贈送元的紅包,為了合理確定保費(fèi)的值,該手機(jī)廠商進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)后得到下表(其中表示保費(fèi)為元時(shí)愿意購買該“手機(jī)碎屏險(xiǎn)”的用戶比例);

1)根據(jù)上面的數(shù)據(jù)求出關(guān)于的回歸直線方程;

2)通過大數(shù)據(jù)分析,在使用該型號手機(jī)的用戶中,購機(jī)后一年內(nèi)發(fā)生碎屏的比例為.已知更換一次該型號手機(jī)屏幕的費(fèi)用為元,若該手機(jī)廠商要求在這次活動中因銷售該“手機(jī)碎屏險(xiǎn)”產(chǎn)生的利潤不少于萬元,能否把保費(fèi)定為5元?

x

10

20

30

40

50

y

0.79

0.59

0.38

0.23

0.01

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,

,

參考數(shù)據(jù):表中5個值從左到右分別記為,相應(yīng)的值分別記為,經(jīng)計(jì)算有,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,設(shè)直線軸的交點(diǎn)為,過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),為線段的中點(diǎn).

(1)若直線的傾斜角為,求的值;

(2)設(shè)直線交直線于點(diǎn),證明:直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,過橢圓的焦點(diǎn)且與長軸垂直的弦長為1

1)求橢圓C的方程;

2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動點(diǎn),AB分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MBx軸交于點(diǎn)C,直線MAy軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.

查看答案和解析>>

同步練習(xí)冊答案