【題目】某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查,瞬時(shí)記憶能力包括聽(tīng)覺(jué)記憶能力與視覺(jué)記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽(tīng)覺(jué)記憶能力為中等,且視覺(jué)記憶能力偏高的學(xué)生為3人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上的概率為.
視覺(jué) | 視覺(jué)記憶能力 | ||||
偏低 | 中等 | 偏高 | 超常 | ||
聽(tīng)覺(jué)記憶 能力 | 偏低 | 0 | 7 | 5 | 1 |
中等 | 1 | 8 | 3 | ||
偏高 | 2 | 0 | 1 | ||
超常 | 0 | 2 | 1 | 1 |
(1)試確定的值;
(2)從40人中任意抽取3人,設(shè)具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的分布列
【答案】(1),(2)分布列見(jiàn)解析
【解析】
(1)由表格數(shù)據(jù)可知視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上的學(xué)生共有人,根據(jù)古典概型概率公式可構(gòu)造方程求得,由求得;
(2)位學(xué)生中具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的學(xué)生共人,可知隨機(jī)變量服從于超幾何分布,利用超幾何分布概率公式可求得每個(gè)取值所對(duì)應(yīng)的概率,從而得到分布列.
(1)由表格數(shù)據(jù)可知,視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上的學(xué)生共有人
記“視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上”為事件
則,解得:
(2)由于從位學(xué)生中任意抽取位的結(jié)果數(shù)為,其中具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的學(xué)生共人,從位學(xué)生中任意抽取3位,其中恰有位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的結(jié)果數(shù)為,所以從位學(xué)生中任意抽取位,其中恰有位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的概率為
的可能取值為
,,,
的分布列為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為6,離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓C的左、右焦點(diǎn)分別為,,左、右頂點(diǎn)分別為A,B,點(diǎn)M,N為橢圓C上位于x軸上方的兩點(diǎn),且,記直線AM,BN的斜率分別為,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面四邊形中,,是,中點(diǎn),,,,將沿對(duì)角線折起至,使平面,則四面體中,下列結(jié)論不正確的是( )
A.平面
B.異面直線與所成的角為
C.異面直線與所成的角為
D.直線與平面所成的角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱(chēng)為類(lèi)工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱(chēng)為類(lèi)工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類(lèi)工人生產(chǎn)能力的莖葉圖(左圖),類(lèi)工人生產(chǎn)能力的頻率分布直方圖(右圖).
(1)問(wèn)類(lèi)、類(lèi)工人各抽查了多少工人,并求出直方圖中的;
(2)求類(lèi)工人生產(chǎn)能力的中位數(shù),并估計(jì)類(lèi)工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表
短期培訓(xùn) | 長(zhǎng)期培訓(xùn) | 合計(jì) | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計(jì) |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在空間四邊形ABCD中,H,G分別是AD,CD的中點(diǎn),E,F分別邊AB,BC上的點(diǎn),且;
求證:(1)點(diǎn)E,F,G,H四點(diǎn)共面;
(2)直線EH,BD,FG相交于同一點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.若為真命題,則,均為假命題;
B.命題“若,則”的逆否命題為真命題;
C.等比數(shù)列的前項(xiàng)和為,若“”則“”的否命題為真命題;
D.“平面向量與的夾角為鈍角”的充要條件是“”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載的“芻甍”(chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個(gè)芻甍,其中是正三角形,,則以下兩個(gè)結(jié)論:①;②,( )
A.①和②都不成立B.①成立,但②不成立
C.①不成立,但②成立D.①和②都成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,短軸的兩個(gè)端點(diǎn)分別為,且,點(diǎn)在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓和圓分別相切于,兩點(diǎn),當(dāng)面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com