【題目】設(shè)曲線(a為正常數(shù))與x軸上方僅有一個(gè)公共點(diǎn)P.

(1)求實(shí)數(shù)m的取值范圍(用a表示);

(2)O為原點(diǎn),若x軸的負(fù)半軸交于點(diǎn)A,當(dāng)時(shí),試求OAP的面積的最大值(用a表示).

【答案】(1)當(dāng)時(shí),;當(dāng)時(shí),.(2)

【解析】

(1)由消去y,得

設(shè),問題(1)轉(zhuǎn)化為方程①在上有惟一解或等根.

只須討論以下三種情況:

=0.此時(shí),當(dāng)且僅當(dāng),即時(shí)適合;

當(dāng)且僅當(dāng);

,此時(shí),當(dāng)且僅當(dāng),即時(shí)適合.

,此時(shí).由于,從而.

綜上可知,當(dāng)時(shí),

當(dāng)時(shí),.

(2)OAP的面積.

,故當(dāng)時(shí),.

由惟一性得

顯然,當(dāng)時(shí),取值最小.

由于,從而取值最大,此時(shí),故.

當(dāng)時(shí),,,此時(shí).

下面比較大大小.

,得.

故當(dāng)時(shí),有

此時(shí),.

當(dāng)時(shí),有

此時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形中,,的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且,如圖2.

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解中學(xué)生對(duì)交通安全知識(shí)的掌握情況,從農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)各選取100名同學(xué)進(jìn)行交通安全知識(shí)競(jìng)賽.下圖1和圖2分別是對(duì)農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)參加競(jìng)賽的學(xué)生成績(jī)按,,分組,得到的頻率分布直方圖.

(Ⅰ)分別估算參加這次知識(shí)競(jìng)賽的農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的平均成績(jī);

(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的學(xué)生對(duì)交通安全知識(shí)的掌握情況有顯著差異”?

成績(jī)小于60分人數(shù)

成績(jī)不小于60分人數(shù)

合計(jì)

農(nóng)村中學(xué)

城鎮(zhèn)中學(xué)

合計(jì)

附:

臨界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(請(qǐng)寫出式子在寫計(jì)算結(jié)果)有4個(gè)不同的小球,4個(gè)不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):

1)共有多少種方法?

2)若每個(gè)盒子不空,共有多少種不同的方法?

3)恰有一個(gè)盒子不放球,共有多少種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長(zhǎng)為正整數(shù)m、n的矩形劃分成若干邊長(zhǎng)均為正整數(shù)的正方形,每個(gè)正方形的邊均平行于矩形的相應(yīng)邊,試求這些正方形邊長(zhǎng)之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,在棱長(zhǎng)為 a 的正方體ABCD-A1 B1C1 D1 中,EF 分別 是棱 AB BC 的中點(diǎn).

(1)求二 面角 B-FB1-E 的大。

(2)求點(diǎn) D 到平面B1EF 的距離;

(3)在棱 DD1 上能否找到一點(diǎn) M, 使 BM ⊥平面EFB1 ? 若能, 試確定點(diǎn) M 的位置;若不能, 請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最大值是0,函數(shù)

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)上異于頂點(diǎn)的任意一點(diǎn),過的直線于另一點(diǎn),交軸正半軸于點(diǎn),且有,當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.

1)求的方程;

2)若直線,且相切于點(diǎn),試問直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案