【題目】如圖 ,在棱長為 a 的正方體ABCD-A1 B1C1 D1 中,E 、F 分別 是棱 AB 與BC 的中點(diǎn).
(1)求二 面角 B-FB1-E 的大。
(2)求點(diǎn) D 到平面B1EF 的距離;
(3)在棱 DD1 上能否找到一點(diǎn) M, 使 BM ⊥平面EFB1 ? 若能, 試確定點(diǎn) M 的位置;若不能, 請說明理由.
【答案】(1) (2) a. (3) M為DD1的中心
【解析】
(1)如圖 ,作BH ⊥B1 F ,垂足為H , 連結(jié) EH .
由正方體性質(zhì)知EB ⊥面BB1 F,則 BH是EH 在面BB1 F內(nèi)的射影.
由三垂線定理可知,EH⊥B1 F .
從而,∠EHB是二面角E-B1 F-B 的平面角.
在Rt△EBH中,由,知.
故,即二面角B-B1F-E的大小為.
(2)因為公共邊,
故.
設(shè)點(diǎn) D 到面B1EF 的距離為h .
由,得.
故,即點(diǎn) D 到面B1EF 的距離為a.
(3)設(shè) EF與BD 交于G , 連 B1G.
因 為 EF ⊥ BD , EF ⊥ BB1 , 所 以 EF ⊥面 BB1D1D , 面 B1 EF ⊥面 BB1D1D .
在面 BB1 D1D 內(nèi)作 BK ⊥B1G 于 K , 延長后交DD1于 M.
由兩平面垂直的性質(zhì)定理知 BM ⊥面 B1EF , 即在 DD1上存在適合條件的點(diǎn) M .
在平面 BB1D1D 中, 因△B1BG ∽△BDM , 故.
又,故,M為DD1的中心.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了傳承經(jīng)典,促進(jìn)學(xué)生課外閱讀,某校從高中年級和初中年級各隨機(jī)抽取100名學(xué)生進(jìn)行有關(guān)對中國四大名著常識了解的競賽,圖1和圖2分別是高中年級和初中年級參加競賽的學(xué)生成績按照,,分組,得到的頻率分布直方圖.
(1)完成下列的列聯(lián)表,并回答是否有的把握認(rèn)為“兩個(gè)學(xué)段的學(xué)生對四大名著的了解有差異”?
成績小于60分的人數(shù) | 成績不小于60的人數(shù) | 合計(jì) | |
初中年級 | |||
高中年級 | |||
合計(jì) |
(2)規(guī)定競賽成績不少于70分的為優(yōu)秀,按分層抽樣的方法從高中,初中年級優(yōu)秀學(xué)生中抽取5人進(jìn)行復(fù)賽,在復(fù)賽人員中選3人進(jìn)行面試,記面試人員中來自初中段的為隨機(jī)變量X,求隨機(jī)變量X的分布列與期望.
其中
附表:
0.10 | 0.05 | span>0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們剛剛結(jié)束了史上最長寒假,經(jīng)高二各班數(shù)學(xué)老師了解,同學(xué)們每天沉迷于學(xué)習(xí)中不能自拔,每天認(rèn)真完成作業(yè),作業(yè)正確率很高,為同學(xué)們點(diǎn)贊!某個(gè)周日一位同學(xué)正在三河灘鍛煉身體,突然接到級部通知回家開網(wǎng)絡(luò)學(xué)生會,從三河灘某處A到對岸公路BC的距離AB為2km, B處與家C間的距離為4km,從A到C,必須先步行到BC上的某一點(diǎn)D,步行速度為5km/h,再乘電動(dòng)車到C,電動(dòng)車車速為10km/h,記
(1)試將由A到C所用的時(shí)間t表示為的函數(shù);
(2)間為多少時(shí),由A到C所用的時(shí)間t最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線(a為正常數(shù))與在x軸上方僅有一個(gè)公共點(diǎn)P.
(1)求實(shí)數(shù)m的取值范圍(用a表示);
(2)O為原點(diǎn),若與x軸的負(fù)半軸交于點(diǎn)A,當(dāng)時(shí),試求△OAP的面積的最大值(用a表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為是拋物線上的任意一點(diǎn).當(dāng)軸時(shí),的面積為4(為坐標(biāo)原點(diǎn)).
(1)求拋物線的方程;
(2)若,連接并延長交拋物線于,點(diǎn)關(guān)于軸對稱,點(diǎn)為直線與軸的交點(diǎn),且為直角三角形,求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在古裝電視劇《知否》中,甲乙兩人進(jìn)行一種投壺比賽,比賽投中得分情況分“有初”“貫耳”“散射”“雙耳”“依竿”五種,其中“有初”算“兩籌”,“貫耳”算“四籌”,“散射”算“五籌”,“雙耳”算“六籌”,“依竿”算“十籌”,三場比賽得籌數(shù)最多者獲勝.假設(shè)甲投中“有初”的概率為,投中“貫耳”的概率為,投中“散射”的概率為,投中“雙耳”的概率為,投中“依竿”的概率為,乙的投擲水平與甲相同,且甲乙投擲相互獨(dú)立.比賽第一場,兩人平局;第二場,甲投了個(gè)“貫耳”,乙投了個(gè)“雙耳”,則三場比賽結(jié)束時(shí),甲獲勝的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年12月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.
為了預(yù)測在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,…,10)建立模型和.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說明理由)
(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)以下是1月25日至1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:
時(shí)間 | 1月25日 | 1月26日 | 1月27日 | 1月28日 | 1月29日 |
累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù) | 1975 | 2744 | 4515 | 5974 | 7111 |
(ⅰ)當(dāng)1月25日至1月27日這3天的誤差(模型預(yù)測數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請判斷(2)的回歸方程是否可靠?
(ⅱ)2020年1月24日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請判斷預(yù)防措施是否有效?
附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
參考數(shù)據(jù):其中,.
5.5 | 390 | 19 | 385 | 7640 | 31525 | 154700 | 100 | 150 | 225 | 338 | 507 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究公司為了調(diào)查公眾對某事件的關(guān)注程度,在某年的連續(xù)6個(gè)月內(nèi),月份和關(guān)注人數(shù)(單位:百)()數(shù)據(jù)做了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
17.5 | 35 | 36.5 |
(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明,并建立y關(guān)于x的回歸方程;
(2)經(jīng)統(tǒng)計(jì),調(diào)查材料費(fèi)用v(單位:百元)與調(diào)查人數(shù)滿足函數(shù)關(guān)系,求材料費(fèi)用的最小值,并預(yù)測此時(shí)的調(diào)查人數(shù);
(3)現(xiàn)從這6個(gè)月中,隨機(jī)抽取3個(gè)月份,求關(guān)注人數(shù)不低于1600人的月份個(gè)數(shù)分布列與數(shù)學(xué)期望.
參考公式:相關(guān)系數(shù),若,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,.
(1)若數(shù)列是等差數(shù)列,且,求實(shí)數(shù)的值;
(2)若數(shù)列滿足(),且,求證:是等差數(shù)列;
(3)設(shè)數(shù)列是等比數(shù)列,試探究當(dāng)正實(shí)數(shù)滿足什么條件時(shí),數(shù)列具有如下性質(zhì):對于任意的(),都存在,使得,寫出你的探究過程,并求出滿足條件的正實(shí)數(shù)的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com