【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個產(chǎn)品),已知其中有且只有一袋次品(10個產(chǎn)品均為次品)如果將5袋產(chǎn)品以1~5編號,第袋取出個產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號是2,此時的重量_________;若次品所在的袋子的編號是,此時的重量_______.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解校園安全教育系列活動的成效,對全校學(xué)生進行了一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如圖所示:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(Ⅰ)求, , 的值;
(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中隨機抽取10人進行座談.現(xiàn)再從這10人這任選4人,記所選4人的量化總分為,求的分布列及數(shù)學(xué)期望;
(Ⅲ)某評估機構(gòu)以指標(biāo)(,其中表示的方差)來評估該校安全教育活動的成效.若,則認(rèn)定教育活動是有效的;否則認(rèn)定教育活動無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為)與此公路所在直線相切于點,點為北半圓弧(弧)上的一點,過點作直線的垂線,垂足為,計劃在內(nèi)(圖中陰影部分)進行綠化,設(shè)的面積為(單位:),
(1)設(shè),將表示為的函數(shù);
(2)確定點的位置,使綠化面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所開發(fā)了一種新藥,測得成人注射該藥后血藥濃度y(微克/毫升)與給藥時間x(小時)之間的若干組數(shù)據(jù),并由此得出y與x之間的一個擬合函數(shù)y=40(0.6x﹣0.62x)(x∈[0,12]),其簡圖如圖所示.試根據(jù)此擬合函數(shù)解決下列問題:
(1)求藥峰濃度與藥峰時間(精確到0.01小時),并指出血藥濃度隨時間的變化趨勢;
(2)求血藥濃度的半衰期(血藥濃度從藥峰濃度降到其一半所需要的時間)(精確到0.01小時).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問是否存在,使得對恒成立?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】基于移動網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風(fēng)靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經(jīng)營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結(jié)果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請用相關(guān)系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請計算出關(guān)于的線性回歸方程,如果不能,請說明理由;
(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計值為決策依據(jù),如果你是公司負(fù)責(zé)人,會選擇哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù),,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點為,點在拋物線上,且.
(1)求拋物線的方程;
(2)過點作互相垂直的兩條直線,與拋物線分別相交于點,、分別為弦、的中點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為,(為參數(shù),),以坐標(biāo)原點為極點,以軸的 非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線和曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com