【題目】在平面直角坐標(biāo)系中,對于直線和點(diǎn),記,若,則稱點(diǎn),被直線l分隔,若曲線C與直線l沒有公共點(diǎn),且曲線C上存在點(diǎn),被直線l分隔,則稱直線l為曲線C的一條分隔線.

1)求證:點(diǎn)被直線分隔;

2)若直線是曲線的分隔線,求實(shí)數(shù)的取值范圍;

3)動點(diǎn)M到點(diǎn)的距離與到y軸的距離之積為1,設(shè)點(diǎn)M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.

【答案】(1)證明見解析(2)(3),證明見解析

【解析】

(1)根據(jù)點(diǎn),被直線l分隔的定義證明即可,

(2)先由直線與曲線無交點(diǎn),利用判別式小于0可得的范圍,然后在曲線上取兩個點(diǎn)驗(yàn)證是否被直線分隔,

(3)先求出軌跡的方程,然后證明軌跡方程與軸無交點(diǎn),再在軌跡上取兩個點(diǎn)驗(yàn)證是否被軸分隔.

1)由題意得:,

被直線分隔;

2)由題意得:直線與曲線無交點(diǎn),

,整理得無解,即

,

又對任意的,點(diǎn)在曲線上,滿足,所以點(diǎn)被直線分隔,

所求的k的范圍是.

3)由題意得:設(shè),,

化簡得點(diǎn)M的軌跡方程為

對任意的,點(diǎn)不是方程的解

直線與曲線E沒有交點(diǎn),

又曲線E上的兩點(diǎn)對于直線滿足,

即點(diǎn)被直線分隔,

直線y軸是E的分隔線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,該三棱錐的表面積是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Ax1y1),Dx2,y2)其中(x1x2)是曲線y29xy≥0).上的兩點(diǎn),A,D兩點(diǎn)在x軸上的射影分別為點(diǎn)B,C|BC|3

(Ⅰ)當(dāng)點(diǎn)B的坐標(biāo)為(1,0)時,求直線AD的方程:

(Ⅱ)記AOD的面積為S1,梯形ABCD的面積為S2,求的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,其中是自然常數(shù), .

(1)當(dāng)時,求的極值,并證明恒成立;

(2)是否存在實(shí)數(shù),使的最小值為 ?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中藥種植基地有兩處種植區(qū)的藥材需在下周一、下周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘.由于下雨會影響藥材品質(zhì),基地收益如下表所示:

周一

無雨

無雨

有雨

有雨

周二

無雨

有雨

無雨

有雨

收益

萬元

萬元

萬元

萬元

若基地額外聘請工人,可在周一當(dāng)天完成全部采摘任務(wù).無雨時收益為萬元;有雨時,收益為萬元.額外聘請工人的成本為萬元.

已知下周一和下周二有雨的概率相同,兩天是否下雨互不影響,基地收益為萬元的概率為.

(Ⅰ)若不額外聘請工人,寫出基地收益的分布列及基地的預(yù)期收益;

(Ⅱ)該基地是否應(yīng)該外聘工人,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選出了三個科目作為選考科目.若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.某學(xué)校為了了解高一年級200名學(xué)生選考科目的意向,隨機(jī)選取20名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有5

5

5

2

1

2

0

選考方案待確定的有7

6

4

3

2

4

2

女生

選考方案確定的有6

3

5

2

3

3

2

選考方案待確定的有2

1

2

1

0

1

1

(1)在選考方案確定的男生中,同時選考物理、化學(xué)、生物的人數(shù)有多少?

(2)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù),(0,)為型函數(shù),共中

(1)若型函數(shù),求函數(shù)的值域;

(2)若型函數(shù),求函數(shù)極值點(diǎn)個數(shù);

(3)若型函數(shù),在上有三點(diǎn)A、B、C橫坐標(biāo)分別為、、,其中,試判斷直線AB的斜率與直線BC的斜率的大小并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線ly=2x+2,若l與橢圓 的交點(diǎn)為A,B,點(diǎn)P為橢圓上的動點(diǎn),則使△PAB的面積為 的點(diǎn)P的個數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,圓方程為,點(diǎn),直線過點(diǎn)

1)如圖1,直線的斜率為,直線交圓不同兩點(diǎn),求弦的長度;

2)動點(diǎn)在圓上作圓周運(yùn)動,線段的中點(diǎn)為點(diǎn),求點(diǎn)的軌跡方程;

3)在(1)中,如圖2,過點(diǎn)作直線,交圓不同兩點(diǎn),證明:

查看答案和解析>>

同步練習(xí)冊答案