【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選出了三個科目作為選考科目.若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.某學(xué)校為了了解高一年級200名學(xué)生選考科目的意向,隨機(jī)選取20名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有5人 | 5 | 5 | 2 | 1 | 2 | 0 |
選考方案待確定的有7人 | 6 | 4 | 3 | 2 | 4 | 2 | |
女生 | 選考方案確定的有6人 | 3 | 5 | 2 | 3 | 3 | 2 |
選考方案待確定的有2人 | 1 | 2 | 1 | 0 | 1 | 1 |
(1)在選考方案確定的男生中,同時選考物理、化學(xué)、生物的人數(shù)有多少?
(2)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.
【答案】(1)2人;(2)
【解析】
(1)由表格可直接發(fā)現(xiàn)選考方案確定的男生中同時選擇“物理、化學(xué)和生物”的人數(shù).
(2)已確定選考科目的男生共5人.其中有2人選擇“物理、化學(xué)和生物”,記為,;有1人選擇“物理、化學(xué)和歷史”,記為;有2人選擇“物理、化學(xué)和地理”,記為,,由此利用列舉法能求出任取2名男生,這2名學(xué)生選考科目完全相同的概率.
(1)選考方案確定的男生中,同時選擇“物理、化學(xué)和生物”的人數(shù)是2人.
(2)由數(shù)據(jù)可知,已確定選考科目的男生共5人.其中有2人選擇“物理、化學(xué)和生物”,記為,;有1人選擇“物理、化學(xué)和歷史”,記為;有2人選擇“物理、化學(xué)和地理”,記為,.
從已確定選考科目的男生中任選2人,有,,,,,,,,,,共10種選法.
兩位學(xué)生選考科目完全相同的選法種數(shù)有,,共2種選法.
設(shè)事件:從已確定選考科目的男生中任選出2人,這兩位學(xué)生選考科目完全相同.
則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓C過點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C的右焦點的直線l與橢圓C交于A、B兩點,且與圓:交于E、F兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于直線和點、,記,若,則稱點,被直線l分隔,若曲線C與直線l沒有公共點,且曲線C上存在點,被直線l分隔,則稱直線l為曲線C的一條分隔線.
(1)求證:點、被直線分隔;
(2)若直線是曲線的分隔線,求實數(shù)的取值范圍;
(3)動點M到點的距離與到y軸的距離之積為1,設(shè)點M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點P(0,1)且互相垂直的兩條直線分別與圓O:交于點A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點C,D.
(1)若AB=,求CD的長;
(2)若CD中點為E,求△ABE面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點到點的距離與點到直線的距離相等.
(1)求點的軌跡方程;
(2)設(shè)點的軌跡為曲線,過點且斜率為1的直線與曲線相交于不同的兩點,,為坐標(biāo)原點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,分別為棱的中點.
(1)在上確定點M,使平面,并說明理由。
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com