【題目】已知圓的圓心在直線上.

(Ⅰ)若圓Cy軸相切,求圓C的方程;

(Ⅱ)當(dāng)a=0時(shí),問在y軸上是否存在兩點(diǎn)A,B,使得對于圓C上的任意一點(diǎn)P,都有,若有,試求出點(diǎn)A,B的坐標(biāo),若不存在,請說明理由.

【答案】Ⅰ),或;(Ⅱ)存在兩點(diǎn)A0,﹣2)、B(0,0),或A0,4)、B0,2.

【解析】

(Ⅰ)由圓與y軸相切,求出|a|= ;(Ⅱ)假設(shè)存在滿足題意的A、B、P,設(shè)出這三個(gè)點(diǎn)的坐標(biāo),然后由兩點(diǎn)間的距離公式將幾何條件|PA|=|PB坐標(biāo)化,整理后對y恒成立兩邊對應(yīng)項(xiàng)系數(shù)相等,列方程組解出y1,y2,即可求出.

(I)∵圓的圓心在直線上,

,∵圓Cy軸相切,,

,

故所求圓C的方程,或

(II)∵a=0,,

∴圓的方程為,∴,

假設(shè)在y軸上存在兩點(diǎn),使得對于圓C上的任意一點(diǎn)P,都有,設(shè),則由

,

,

依題意此方程對y恒成立,故,

解得,

故在y軸上存在兩點(diǎn)A(0,﹣2)、B(0,0),或A(0,4)、B(0,2),使得對于圓C上的任意一點(diǎn)P,都有

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的反函數(shù)為 ,等比數(shù)列{an}的公比為2,若 ,則 =(
A.21004×2016
B.21005×2015
C.21005×2016
D.21008×2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一列火車從重慶駛往北京,沿途有n個(gè)車站(包括起點(diǎn)站重慶和終點(diǎn)站北京).車上有一郵政車廂,每停靠一站便要卸下火車已經(jīng)過的各站發(fā)往該站的郵袋各1個(gè),同時(shí)又要裝上該站發(fā)往以后各站的郵袋各1個(gè),設(shè)從第k站出發(fā)時(shí),郵政車廂內(nèi)共有郵袋ak個(gè)(k=1,2,…,n).
(1)求數(shù)列{ak}的通項(xiàng)公式;
(2)當(dāng)k為何值時(shí),ak的值最大,求出ak的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線ax﹣by+2=0(a>0,b>0)和函數(shù)f(x)=ax+1+1(a>0且a≠1)的圖象恒過同一個(gè)定點(diǎn),則當(dāng) + 取最小值時(shí),函數(shù)f(x)的解析式是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸、B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸、B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元、每噸乙產(chǎn)品可獲得利潤3萬元.該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過13噸、B原料不超過18噸,那么該企業(yè)可獲得最大利潤是(
A.12萬元
B.20萬元
C.25萬元
D.27萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中,下列選項(xiàng)正確的是( )

A. 在回歸直線中,變量時(shí),變量的值一定是15.

B. 兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)就越接近于1.

C. 在殘差圖中,殘差點(diǎn)比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān).

D. 是兩個(gè)相等的非零實(shí)數(shù),則是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對學(xué)生的期末復(fù)習(xí)有著重要的影響,我校隨機(jī)抽取100名學(xué)生,對學(xué)習(xí)成績和學(xué)案使用程度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示:

已知隨機(jī)抽查這100名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.

參考公式:,其中

(1)請將上表補(bǔ)充完整(不用寫計(jì)算過程);

(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法有多大的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與對待學(xué)案的使用態(tài)度有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì),僅在北京地區(qū)每天就有500萬單快遞等待派送,近5萬多名快遞員奔跑在一線,快遞網(wǎng)點(diǎn)人員流動(dòng)性也較強(qiáng),各快遞公司需要經(jīng)常招聘快遞員,保證業(yè)務(wù)的正常開展.下面是50天內(nèi)甲、乙兩家快遞公司的快遞員的每天送貨單數(shù)統(tǒng)計(jì)表:

送貨單數(shù)

30

40

50

60

天數(shù)

10

10

20

10

5

15

25

5

已知這兩家快遞公司的快遞員的日工資方案分別為:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成元.

(1)分別求甲、乙快遞公司的快遞員的日工資(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

(2)若將頻率視為概率,回答下列問題:

記甲快遞公司的快遞員的日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

小趙擬到甲、乙兩家快遞公司中的一家應(yīng)聘快遞員的工作,如果僅從日收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M(﹣3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)N在直線PQ上,且滿足 . (Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)N的軌跡C的方程;
(Ⅱ)過點(diǎn) 做直線l與軌跡C交于A,B兩點(diǎn),若在x軸上存在一點(diǎn)E(x0 , 0),使得△AEB是以點(diǎn)E為直角頂點(diǎn)的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案