【題目】已知函數(shù) 的反函數(shù)為 ,等比數(shù)列{an}的公比為2,若 ,則 =(
A.21004×2016
B.21005×2015
C.21005×2016
D.21008×2015

【答案】D
【解析】解答:由 ,所以 , 所以a2+a4=10,又公比q=2,所以a1=1,故an=2n1 ,
所以 log21+log221+log222+log223++log222015
=1+2+3++2015= ;
所以 =1008×2015 , 故選D.
分析:本題由函數(shù) 可確定反函數(shù) ,從而利用 得到等比數(shù)列第二項(xiàng)與第四項(xiàng)的等式關(guān)系,并結(jié)合公比為2求出通項(xiàng)an=2n1 , 由此求出 的值,進(jìn)而可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正項(xiàng)等比數(shù)列{an}中,存在兩項(xiàng)am、an使得=4a1 , 且a6=a5+2a4 , 則的最小值是( 。
A.
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點(diǎn)E、F分別是棱BC,的中點(diǎn),P是側(cè)面內(nèi)一點(diǎn),若平面AEF,則線段長度的取值范圍是_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點(diǎn)P.

(1)若l與直線x+3y﹣1=0垂直,求l的方程;

(2)點(diǎn)A(﹣1,3)和點(diǎn)B(3,1)到直線l的距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人上午7時乘船出發(fā),以勻速海里/小時港前往相距50海里的港,然后乘汽車以勻速千米/小時()自港前往相距千米的市,計(jì)劃當(dāng)天下午4到9時到達(dá)市.設(shè)乘船和汽車的所要的時間分別為小時,如果所需要的經(jīng)費(fèi) (單位:元)

(1)試用含有的代數(shù)式表示;

(2)要使得所需經(jīng)費(fèi)最少,求的值,并求出此時的費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在1,2之間插入n個正數(shù)a1 , a2 , …,an , 使這n+2個數(shù)成等比數(shù)列,則a1a2a3an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn表示數(shù)列{an}的前n項(xiàng)和,若對任意的n∈N*滿足an1ana2 , 且a3=2,則S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在直線上.

(Ⅰ)若圓Cy軸相切,求圓C的方程;

(Ⅱ)當(dāng)a=0時,問在y軸上是否存在兩點(diǎn)A,B,使得對于圓C上的任意一點(diǎn)P,都有,若有,試求出點(diǎn)AB的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案