【題目】【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)?/span>答卷卡指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4—1:幾何證明選講
如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線段AB與圓O交于點(diǎn)M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN.
B.選修4—2:矩陣與變換
設(shè)a,b∈R.若直線l:ax+y-7=0在矩陣A= 對(duì)應(yīng)的變換作用下,得到的直線為l′:9x+y-91=0.求實(shí)數(shù)a,b的值.
C.選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,直線l: (t為參數(shù)),與曲線C: (k為參數(shù))交于A,B兩點(diǎn),求線段AB的長.
D.選修4—5:不等式選講
設(shè)a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).
【答案】見解析.
試題分析:作差比較,化簡(jiǎn)得出原式=,即可作出證明。
試題解析:
證明: a4+6a2b2+b4-4ab(a2+b2)=(a2+b2)2-4ab(a2+b2)+4a2b2
=(a2+b2-2ab)2=(a-b)4.
因?yàn)閍≠b,所以(a-b)4>0, 所以a4+6a2b2+b4>4ab(a2+b2).
【解析】試題分析:(1)因?yàn)?/span>是圓的切線,故由切割線定理得,設(shè) ,列出方程,即可求解的值,得到的長;
(2)根據(jù)和相似,列出比例關(guān)系式,即可得出證明。
試題解析:
解:(1)因?yàn)锽C是圓O的切線,故由切割線定理得BC2=BM·BA.
設(shè)AM=t,因?yàn)锳B=8,BC=4,
所以42=8(8-t),解得t=6 ,即線段AM的長度為6.
(2)因?yàn)樗倪呅蜛MNC為圓內(nèi)接四邊形,所以∠A=∠MNB.又∠B=∠B,所以△BMN∽△BCA,
所以=.
因?yàn)锳B=2AC,所以BN=2MN.
B.選修4—2:矩陣與變換
設(shè)a,b∈R.若直線l:ax+y-7=0在矩陣A= 對(duì)應(yīng)的變換作用下,得到的直線為l′:9x+y-91=0.求實(shí)數(shù)a,b的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在點(diǎn)處的切線為,直線與軸相交于點(diǎn).若點(diǎn)的縱坐標(biāo)恒小于1,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,“厲行節(jié)約,反對(duì)浪費(fèi)”之風(fēng)悄然吹開,某市通過隨機(jī)詢問100名性別不同的居民是否能做到“光盤”行動(dòng),得到如下的列聯(lián)表:
做不到“光盤” | 能做到“光盤” | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
附:
參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
C.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
D.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求f(x)的定義域及單調(diào)區(qū)間;
(2)求f(x)的最大值,并求出取得最大值時(shí)x的值;
(3)設(shè)函數(shù)g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,焦點(diǎn)在x軸上的橢圓C: 經(jīng)過點(diǎn)(b,2e),其中e為橢圓C的離心率.過點(diǎn)T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(diǎn)(A在x軸下方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)O且平行于l的直線交橢圓C于點(diǎn)M,N,求 的值;
(3)記直線l與y軸的交點(diǎn)為P.若,求直線l的斜率k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為邊BC上一點(diǎn),AD=6,BD=3,DC=2.
(1)若AD⊥BC,求∠BAC的大小;
(2)若∠ABC=,求△ADC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí) ,若f(x)≥a+1對(duì)一切 x≥0成立,則a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f′(x)是偶函數(shù)f(x)(x∈(﹣∞,0)∪(0,+∞)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣1,0)∪(0,1)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項(xiàng)和Sn .
(1)求an及Sn;
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com