【題目】設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí) ,若f(x)≥a+1對(duì)一切 x≥0成立,則a的取值范圍為 .
【答案】a≤﹣1或a≥8
【解析】解:設(shè)x>0,則﹣x<0.
∵當(dāng)x<0時(shí), ,
∴f(﹣x)=﹣x﹣ +7.
∵y=f(x)是定義在R上的奇函數(shù),
∴f(x)=﹣f(﹣x)=x+ ﹣7.
∵f(x)≥a+1對(duì)一切x≥0成立,
∴當(dāng)x>0時(shí),x+ ﹣7≥a+1恒成立;且當(dāng)x=0時(shí),0≥a+1恒成立.
①由當(dāng)x=0時(shí),0≥a+1恒成立,解得a≤﹣1.
②由當(dāng)x>0時(shí),x+ ﹣7≥a+1恒成立,可得:2|a|﹣7≥a+1
解得a≤﹣8或a≥8.
綜上可得:a≤﹣1或a≥8.
因此a的取值范圍是:a≤﹣1或a≥8.
所以答案是:a≤﹣1或a≥8.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的奇偶性的相關(guān)知識(shí),掌握偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與曲線(xiàn)切于點(diǎn),求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)?/span>答卷卡指定區(qū)域內(nèi)作答.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4—1:幾何證明選講
如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線(xiàn)段AB與圓O交于點(diǎn)M.
(1)若BC是圓O的切線(xiàn),且AB=8,BC=4,求線(xiàn)段AM的長(zhǎng)度;
(2)若線(xiàn)段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN.
B.選修4—2:矩陣與變換
設(shè)a,b∈R.若直線(xiàn)l:ax+y-7=0在矩陣A= 對(duì)應(yīng)的變換作用下,得到的直線(xiàn)為l′:9x+y-91=0.求實(shí)數(shù)a,b的值.
C.選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,直線(xiàn)l: (t為參數(shù)),與曲線(xiàn)C: (k為參數(shù))交于A,B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).
D.選修4—5:不等式選講
設(shè)a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且滿(mǎn)足B∪C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax﹣1(x≥0)的圖象經(jīng)過(guò)點(diǎn)(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函數(shù)f(x)=a2x﹣ax﹣2+8,x∈[﹣2,1]的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知 a>0 且 a≠1,若函數(shù)f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)討論不等式f(x)≥g(x)成立時(shí)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2﹣4x+2y+m=0與y軸交于A,B兩點(diǎn),且∠ACB=90°(C為圓心),過(guò)點(diǎn)P(0,2)且斜率為k的直線(xiàn)與圓C相交于M,N兩點(diǎn).
(1)求實(shí)數(shù)m的值;
(2)若|MN|≥4,求k的取值范圍;
(3)若向量 與向量 共線(xiàn)(O為坐標(biāo)原點(diǎn)),求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com