【題目】(導(dǎo)學(xué)號:05856299)已知雙曲線 (a>0,b>0)的左、右焦點(diǎn)分別是F1,F2,點(diǎn)P是其上一點(diǎn),雙曲線的離心率是2,若△F1PF2是直角三角形且面積為3,則雙曲線的實(shí)軸長為( )
A. 2 B. C. 2或 D. 1或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.
非一線 | 一線 | 總計(jì) | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計(jì) | 58 | 42 | 100 |
由K2=,得K2=.
參照下表,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
正確的結(jié)論是( )
A. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別有關(guān)”
B. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別無關(guān)”
C. 有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”
D. 有99%以上的把握認(rèn)為“生育意愿與城市級別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省高考改革實(shí)施方案指出:該省高考考生總成績將由語文、數(shù)學(xué)、外語3門統(tǒng)一高考成績和學(xué)生自主選擇的學(xué)業(yè)水平等級性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長對高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?
贊成 | 不贊成 | 合計(jì) | |||||
城鎮(zhèn)居民 | |||||||
農(nóng)村居民 | |||||||
合計(jì) | |||||||
P(K2≥k0) | 0.10 | 0.05 | 0.005 | ||||
k0 | 2.706 | 3.841 | 7.879 | ||||
注: 其中
(2)用樣本的頻率估計(jì)概率,若隨機(jī)在全省不贊成高考改革的家長中抽取3個,記這3個家長中是城鎮(zhèn)戶口的人數(shù)為x,試求x的分布列及數(shù)學(xué)期望E(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆江蘇省泰州中學(xué)高三12月月考】已知橢圓的中心為坐標(biāo)原點(diǎn),橢圓短軸長為,動點(diǎn)()在橢圓的準(zhǔn)線上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設(shè)是橢圓的右焦點(diǎn),過點(diǎn)作的垂線與以為直徑的圓交于點(diǎn),求證:線段的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=1,公比q>0,其前n項(xiàng)和為Sn,且S1+a1,S3+a3,S2+a2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足an+1=,Tn為數(shù)列{bn}的前n項(xiàng)和,若Tn≥m恒成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856309)
已知拋物線C的方程為x2=4y,M(2,1)為拋物線C上一點(diǎn),F為拋物線的焦點(diǎn).
(Ⅰ)求|MF|;
(Ⅱ)設(shè)直線l2:y=kx+m與拋物線C有唯一公共點(diǎn)P,且與直線l1:y=-1相交于點(diǎn)Q,試問,在坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使得以PQ為直徑的圓恒過點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856321)已知函數(shù)f(x)=2cos(ωx-φ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A(, ),B(, ),則函數(shù)f(x)的單調(diào)增區(qū)間為( )
A. [-+2kπ, +2kπ](k∈Z) B. [+2kπ, +2kπ](k∈Z)
C. [-+kπ, +kπ](k∈Z) D. [+kπ, +kπ](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(m2-m-1)·是冪函數(shù),對任意x1,x2∈(0,+∞)且x1≠x2,滿足,若a,b∈R且a+b>0,ab<0,則f(a)+f(b)的值( )
A. 恒大于0 B. 恒小于0
C. 等于0 D. 無法判斷
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com