【題目】(導學號:05856321)已知函數(shù)f(x)=2cos(ωxφ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A( ),B(, ),則函數(shù)f(x)的單調(diào)增區(qū)間為(  )

A. [-+2kπ, +2kπ](k∈Z) B. [+2kπ, +2kπ](k∈Z)

C. [-kπ, kπ](k∈Z) D. [kπ, kπ](k∈Z)

【答案】C

【解析】由圖可知T=π,故ω=2,故f(x)=2cos(2xφ),將A(, )代入可知2cos(π-φ)=,故cos(π-φ)=,因為φ∈[0,π],故φ,故f(x)=2cos(2x),令-π+2kπ≤2x≤2kπ(k∈Z),解得-+2kπ≤2x+2kπ(k∈Z),即-kπ≤xkπ(k∈Z),

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線yx+ln x在點(1,1)處的切線與曲線yax2+(a+2)x+1相切,則a________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)gsinxcosxsin2x,將其圖象向左移個單位,并向上移個單位,得到函數(shù)facos2b的圖象.

(Ⅰ)求實數(shù)a,b 的值;

(Ⅱ)設函數(shù)φgfx,求函數(shù)φ的單調(diào)遞增區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856299)已知雙曲線 (a>0,b>0)的左、右焦點分別是F1F2,點P是其上一點,雙曲線的離心率是2,若△F1PF2是直角三角形且面積為3,則雙曲線的實軸長為(  )

A. 2 B. C. 2或 D. 1或

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856311)[選修4-4:坐標系與參數(shù)方程]

已知曲線C1 (α為參數(shù))與曲線C2ρ=4sin θ(θ為參數(shù)).

(Ⅰ)寫出曲線C1的普通方程和曲線C2的直角坐標方程;

(Ⅱ)求C1C2公共弦的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856332)

已知三棱柱ABCA1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,EBB1的中點,FCB1的中點.

(Ⅰ)證明:平面AEF⊥平面CAA1C1;

(Ⅱ)若CA=2,AA1=4,求B1到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2018屆吉林省普通中學高三第二次調(diào)研】設橢圓的左焦點為,右頂點為,離心率為,短軸長為,已知是拋物線的焦點.

(1)求橢圓的方程和拋物線的方程;

(2)若拋物線的準線上兩點關于軸對稱,直線與橢圓相交于點異于點),直線軸相交于點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某讀者協(xié)會為了了解該地區(qū)居民睡前看書的時間情況,從該地區(qū)睡前看書的居民中隨機選取了n人進行調(diào)查,現(xiàn)將調(diào)查結果進行統(tǒng)計得到如圖所示的頻率分布直方圖.則下列說法正確的是(  )

A. 睡前看書時間介于40~50分鐘的頻率為0.03

B. 睡前看書時間低于30分鐘的頻率為0.67

C. 若n=1000,則可估計本次調(diào)查中睡前看書時間介于30~50分鐘的有67人

D. 若n=1000,則可估計本次調(diào)查中睡前看書時間介于20~40分鐘的有600人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)為定義在R上的偶函數(shù),當x≥0時,有f(x1)=-f(x),且當x∈[0,1)時,f(x)log2(x1),給出下列命題

f(2014)f(2015)0

函數(shù)f(x)在定義域上是周期為2的函數(shù);

直線yx與函數(shù)f(x)的圖象有2個交點;

函數(shù)f(x)的值域為(1,1)

其中正確的是(  )

A. ①② B. ②③

C. ①④ D. ①②③④

查看答案和解析>>

同步練習冊答案