【題目】如圖,在四棱錐中,底面是邊長為2的正方形,底面,的中點(diǎn),的中點(diǎn).

(1)求證:平面;

(2)求異面直線所成角的正切值的大。

【答案】(1)證明見解析;(2).

【解析】

分析:(1)由三角形中位線的性質(zhì)可得,于是得到,根據(jù)線面平行的判定定理可得結(jié)論成立.(2)連接AC,設(shè)線段AC的中點(diǎn)為E,連接ME,DE,為異面直線OCMD所成的角(或其補(bǔ)角),由條件可得為直角三角形,解三角形可得所求.

詳解:(1)∵的中點(diǎn),的中點(diǎn),

.

,

平面,平面

(2)連接AC,設(shè)線段AC的中點(diǎn)為E,連接ME,DE,

,

為異面直線OCMD所成的角(或其補(bǔ)角).

由已知可得DE,EM,MD,

,

為直角三角形,

∴異面直線所成角的正切值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的兩個(gè)焦點(diǎn)分別為 ,過作橢圓長軸的垂線交橢圓于點(diǎn),若為等腰直角三角形,則橢圓的離心率是( )

A. B. C. D.

【答案】C

【解析】試題分析:解:設(shè)點(diǎn)Px軸上方,坐標(biāo)為(),為等腰直角三角形,|PF2|=|F1F2|,故選D.

考點(diǎn):橢圓的簡單性質(zhì)

點(diǎn)評(píng):本題主要考查了橢圓的簡單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握?qǐng)A錐曲線中ab,ce的關(guān)系

型】單選題
結(jié)束】
8

【題目】”是“對(duì)任意的正數(shù), ”的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求證:函數(shù)在(1+∞)上是增函數(shù);

(Ⅱ)求函數(shù)[1e]上的最小值及相應(yīng)的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是邊長為2的正方形,

PAAD,FPD的中點(diǎn).

(1)求證:AF⊥平面PDC;

(2)求直線AC與平面PCD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

121

122

123

124

125

溫差x()

10

11

13

12

8

發(fā)芽數(shù)y()

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;

(2)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求y關(guān)于x的線性回歸方程

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ABC的內(nèi)角AB、C所對(duì)的邊長分別為ab、c,acos B3bsin A4.

(1)求邊長a;

(2)ABC的面積S10,ABC的周長l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中正確的是(.

①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面互相平行;

②若一條直線和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線也和另一個(gè)平面垂直

③若一條直線和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線一定平行于另一個(gè)平面

④若兩個(gè)平面垂直,那么,一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.

A. ②和④ B. ②和③ C. ③和④ D. ①和②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖, ,圖中的一系列圓是圓心分別為, 的兩組同心圓,每組同心圓的半徑依次為, , ,

依次遞增,點(diǎn)是某兩圓的一個(gè)交點(diǎn),設(shè):

, 為焦點(diǎn),且過點(diǎn)的橢圓為;

為焦點(diǎn),且過點(diǎn)的雙曲線為,

)雙曲線離心率__________

)若以軸正方向,線段中點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,則

橢圓方程為__________

3雙曲線漸近線方程為__________

4在兩組同心圓的交點(diǎn)中,在橢圓上的點(diǎn)共__________個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,長方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),,,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊,上.

(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點(diǎn)上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案