【題目】如圖,四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是邊長為2的正方形,
PA=AD,F為PD的中點.
(1)求證:AF⊥平面PDC;
(2)求直線AC與平面PCD所成角的大小.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中, E、F分別為PD、AB的中點,△PAB為等腰直角三角形,PA⊥平面ABCD,PA=1.
(1)求證:直線AE∥平面PFC;
(2)求證:PB⊥FC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,且對任意正整數(shù),滿足.
(1)求數(shù)列的通項公式.
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的前n項和為Sn,且=9,S6=60.
(I)求數(shù)列{an}的通項公式;
(II)若數(shù)列{bn}滿足bn+1﹣bn=(n∈N+)且b1=3,求數(shù)列的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一位同學(xué)家里訂了一份報紙,送報人每天都在早上6 : 207 : 40之間將報紙送達,該同學(xué)需要早上7 : 008 : 00之間出發(fā)上學(xué),則這位同學(xué)在離開家之前能拿到報紙的概率為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個頂點為A(0,-1),焦點在x軸上。若右焦點F到直線x-y+2=0的距離為3。
(1)求橢圓的方程;
(2)設(shè)直線y=kx+m(k≠0)與橢圓相交于不同的兩點M、N。當|AM|=|AN|時,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,底面,為的中點,為的中點.
(1)求證:平面;
(2)求異面直線與所成角的正切值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),數(shù)列滿足, .
(Ⅰ)當時,求證:數(shù)列為等差數(shù)列并求;
(Ⅱ)證明:對于一切正整數(shù),.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com