【題目】已知函數(shù), .
(1)求函數(shù)在的最小值;
(2)若函數(shù)與的圖象恰有一個(gè)公共點(diǎn),求實(shí)數(shù)的值;
(3)若函數(shù)有兩個(gè)不同的極值點(diǎn),且,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:(Ⅰ)由,得極值點(diǎn)為,分情況討論及時(shí),函數(shù)的最小值;(Ⅱ)當(dāng)函數(shù)有兩個(gè)不同的極值點(diǎn),即有兩個(gè)不同的實(shí)根,問(wèn)題等價(jià)于直線(xiàn)與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),由單調(diào)性結(jié)合函數(shù)圖象可知當(dāng)時(shí), 存在,且的值隨著的增大而增大,而當(dāng)時(shí),由題意, 代入上述方程可得,此時(shí)實(shí)數(shù)的取值范圍為.
試題解析:(Ⅰ)由,可得,
①時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
函數(shù)在上的最小值為,
②當(dāng)時(shí),在上單調(diào)遞增,
,
;
(Ⅱ),則
題意即為有兩個(gè)不同的實(shí)根,
即有兩個(gè)不同的實(shí)根,
等價(jià)于直線(xiàn)與函數(shù)的圖像有兩個(gè)不同的交點(diǎn),
, 在上單調(diào)遞減,在上單調(diào)遞增,
畫(huà)出函數(shù)圖像的大致形狀(如右圖),
由圖像知,當(dāng)時(shí), 存在,且的值隨著的增大
而增大,而當(dāng)時(shí),由題意,
兩式相減可得
代入上述方程可得,
此時(shí),
所以,實(shí)數(shù)的取值范圍為;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人各射擊一次,命中率分別為0.8和0.5,兩人同時(shí)命中的概率為0.4,求甲、乙兩人至少有一人命中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面α, 直線(xiàn)a. 則在α內(nèi)一定存在直線(xiàn)b,使a與b( )
A. 平行 B. 相交 C. 異面 D. 垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下莖葉圖記錄了某NBA籃球隊(duì)內(nèi)兩大中鋒在六次訓(xùn)練中搶得籃板球數(shù)記錄,由于教練一時(shí)疏忽,忘了記錄乙球員其中一次的數(shù)據(jù),在圖中以X表示。
(1)如果乙球員搶得籃板球的平均數(shù)為10時(shí),求X的值和乙球員搶得籃板球數(shù)的方差;
(2)如果您是該球隊(duì)的教練在正式比賽中您會(huì)派誰(shuí)上場(chǎng)呢?并說(shuō)明理由(用數(shù)據(jù)說(shuō)明)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn),直線(xiàn)交橢圓于不同的兩點(diǎn),設(shè)線(xiàn)段的中點(diǎn)為.
(1)求橢圓的方程;
(2)當(dāng)的面積為(其中為坐標(biāo)原點(diǎn))且時(shí),試問(wèn):在坐標(biāo)平面上是否存在兩個(gè)定點(diǎn),使得當(dāng)直線(xiàn)運(yùn)動(dòng)時(shí),為定值?若存在,求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于for x=a:b:c,下列說(shuō)法正確的有( )
①當(dāng)x=c時(shí)程序結(jié)束;②當(dāng)x=c時(shí),還要繼續(xù)執(zhí)行一次;③當(dāng)b>0時(shí),x≥a時(shí)程序結(jié)束;④當(dāng)b<0時(shí),x<a時(shí)程序結(jié)束.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,C.已知3cos(B-C)-1=6cosBcosC.
(1)求cosA;
(2)若a=3,△ABC的面積為,求邊b和c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王在年初用50萬(wàn)元購(gòu)買(mǎi)一輛大貨車(chē),第一年因繳納各種費(fèi)用需支出6萬(wàn)元,從第二年起,每年都比上一年增加支出2萬(wàn)元,假定該車(chē)每年的運(yùn)輸收入均為25萬(wàn)元.小王在該車(chē)運(yùn)輸累計(jì)收入超過(guò)總支出后,考慮將大貨車(chē)作為二手車(chē)出售,若該車(chē)在第x年年底出售,其銷(xiāo)售價(jià)格為25-x萬(wàn)元(國(guó)家規(guī)定大貨車(chē)的報(bào)廢年限為10年).
(1)大貨車(chē)運(yùn)輸?shù)降趲啄昴甑,該?chē)運(yùn)輸累計(jì)收入超過(guò)總支出?
(2)在第幾年年底將大貨車(chē)出售,能使小王獲得的年平均利潤(rùn)最大(利潤(rùn)=累計(jì)收入+銷(xiāo)售收入-總支出)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com