【題目】已知函數(shù), .

(1)求函數(shù)的最小值;

(2)若函數(shù)的圖象恰有一個(gè)公共點(diǎn),求實(shí)數(shù)的值;

(3)若函數(shù)有兩個(gè)不同的極值點(diǎn),且,求實(shí)數(shù)的取值范圍.

【答案】(;(.

【解析】試題分析:()由,得極值點(diǎn)為,分情況討論時(shí),函數(shù)的最小值;()當(dāng)函數(shù)有兩個(gè)不同的極值點(diǎn),即有兩個(gè)不同的實(shí)根,問(wèn)題等價(jià)于直線(xiàn)與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),由單調(diào)性結(jié)合函數(shù)圖象可知當(dāng)時(shí), 存在,且的值隨著的增大而增大,而當(dāng)時(shí),由題意, 代入上述方程可得,此時(shí)實(shí)數(shù)的取值范圍為.

試題解析:()由,可得,

時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

函數(shù)上的最小值為

當(dāng)時(shí),上單調(diào)遞增,

,

;

,則

題意即為有兩個(gè)不同的實(shí)根

有兩個(gè)不同的實(shí)根,

等價(jià)于直線(xiàn)與函數(shù)的圖像有兩個(gè)不同的交點(diǎn),

, 上單調(diào)遞減,在上單調(diào)遞增,

畫(huà)出函數(shù)圖像的大致形狀(如右圖),

由圖像知,當(dāng)時(shí), 存在,且的值隨著的增大

而增大,而當(dāng)時(shí),由題意,

兩式相減可得

代入上述方程可得

此時(shí),

所以,實(shí)數(shù)的取值范圍為;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人各射擊一次,命中率分別為0.80.5,兩人同時(shí)命中的概率為0.4,求甲、乙兩人至少有一人命中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面α, 直線(xiàn)a. 則在α內(nèi)一定存在直線(xiàn)b,使ab( )

A. 平行 B. 相交 C. 異面 D. 垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中

)求處的切線(xiàn)方程;

)當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下莖葉圖記錄了某NBA籃球隊(duì)內(nèi)兩大中鋒在六次訓(xùn)練中搶得籃板球數(shù)記錄,由于教練一時(shí)疏忽,忘了記錄乙球員其中一次的數(shù)據(jù),在圖中以X表示。

1如果乙球員搶得籃板球的平均數(shù)為10時(shí),求X的值和乙球員搶得籃板球數(shù)的方差;

2如果您是該球隊(duì)的教練在正式比賽中您會(huì)派誰(shuí)上場(chǎng)呢?并說(shuō)明理由用數(shù)據(jù)說(shuō)明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn),直線(xiàn)交橢圓于不同的兩點(diǎn),設(shè)線(xiàn)段的中點(diǎn)為

1求橢圓的方程;

2當(dāng)的面積為其中為坐標(biāo)原點(diǎn)時(shí),試問(wèn):在坐標(biāo)平面上是否存在兩個(gè)定點(diǎn),使得當(dāng)直線(xiàn)運(yùn)動(dòng)時(shí),為定值?若存在,求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于for x=a:b:c,下列說(shuō)法正確的有(  )

當(dāng)x=c時(shí)程序結(jié)束;②當(dāng)x=c時(shí),還要繼續(xù)執(zhí)行一次;③當(dāng)b>0時(shí),x≥a時(shí)程序結(jié)束;④當(dāng)b<0時(shí),x<a時(shí)程序結(jié)束.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,C已知3cosB-C-1=6cosBcosC

1求cosA;

2若a=3,△ABC的面積為,求bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王在年初用50萬(wàn)元購(gòu)買(mǎi)一輛大貨車(chē),第一年因繳納各種費(fèi)用需支出6萬(wàn)元,從第二年起,每年都比上一年增加支出2萬(wàn)元,假定該車(chē)每年的運(yùn)輸收入均為25萬(wàn)元小王在該車(chē)運(yùn)輸累計(jì)收入超過(guò)總支出后,考慮將大貨車(chē)作為二手車(chē)出售,若該車(chē)在第x年年底出售,其銷(xiāo)售價(jià)格為25-x萬(wàn)元國(guó)家規(guī)定大貨車(chē)的報(bào)廢年限為10年

1大貨車(chē)運(yùn)輸?shù)降趲啄昴甑,該?chē)運(yùn)輸累計(jì)收入超過(guò)總支出?

2在第幾年年底將大貨車(chē)出售,能使小王獲得的年平均利潤(rùn)最大利潤(rùn)=累計(jì)收入+銷(xiāo)售收入-總支出?

查看答案和解析>>

同步練習(xí)冊(cè)答案