【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25-x萬元(國家規(guī)定大貨車的報廢年限為10年).
(1)大貨車運輸?shù)降趲啄昴甑,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?
【答案】(1)從第3年開始運輸累計收入超過總支出(2)第5年年底將大貨車出售
【解析】
試題分析:(1)由n總收入減去總支出得到大貨車到第n年年底的運輸累計收入與總支出的差,然后求解一元二次不等式得答案;(2)由利潤=累計收入+銷售收入-總支出得到第n年年底將大貨車出售時小王獲得的年利潤,然后利用基本不等式求最值
試題解析:(1)設大貨車到第x年年底的運輸累計收入與總支出的差為y萬元則y=25x--50,
(0<x≤10,x∈N),即y=-x2+20x-50,(0<x≤10,x∈N),
由-x2+20x-50>0,
解得10-5<x<10+5,
而2<10-5<3,
故從第3年開始運輸累計收入超過總支出. 5分
(2)因為利潤=累計收入+銷售收入-總支出.
所以銷售二手貨車后,小王的年平均利潤為
= [y+(25-x)]= (-x2+19x-25)=
19-,而19-≤19-2 =9, 11分
當且僅當x=5時取得等號.即小王應當在第5年年底將大貨車出售,才能使年平均利潤最大 12分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)在的最小值;
(2)若函數(shù)與的圖象恰有一個公共點,求實數(shù)的值;
(3)若函數(shù)有兩個不同的極值點,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點,,為坐標原點,點滿足=+,(為實數(shù));
(1)當點在軸上時,求實數(shù)的值;
(2)四邊形能否是平行四邊形?若是,求實數(shù)的值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了評價某個電視欄目的改革效果,在改革前后分別從居民點抽取了100位居民進行調(diào)查,經(jīng)過計算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是
A. 有99%的人認為該欄目優(yōu)秀
B. 有99%的人認為該欄目是否優(yōu)秀與改革有關(guān)系
C. 有99%的把握認為電視欄目是否優(yōu)秀與改革有關(guān)系
D. 沒有理由認為電視欄目是否優(yōu)秀與改革有關(guān)系
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:①三點確定一個平面;②一條直線和一個點確定一個平面;③若四點不共面,則每三點一定不共線;④三條平行直線確定三個平面.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若是在定義域內(nèi)的增函數(shù),求的取值范圍;
(2)若函數(shù)(其中為的導函數(shù))存在三個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四個小動物換座位,開始時鼠、猴、兔、貓分別坐1,2,3,4號座位上(如圖).第1次前后排動物互換座位,第2次左右列動物互換座位……這樣交替進行下去,那么第2 005次互換座位后,小兔的座位號是( )
1鼠 | 2猴 |
3兔 | 4貓 |
開始
1兔 | 2貓 |
3鼠 | 4猴 |
第一次
1貓 | 2兔 |
3猴 | 4鼠 |
第二次
1猴 | 2鼠 |
3貓 | 4兔 |
第三次
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com