【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以OD為直徑的圓與點(diǎn)M的位置關(guān)系.
【答案】(1)(2)點(diǎn)在以為直徑的圓上
【解析】
(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn),,則,,求出直線的方程,進(jìn)而求出點(diǎn)的坐標(biāo),再利用中點(diǎn)坐標(biāo)公式得到點(diǎn)的坐標(biāo),下面結(jié)合點(diǎn)在橢圓上證出,所以點(diǎn)在以為直徑的圓上.
(1)由題意可知,,解得,
橢圓的標(biāo)準(zhǔn)方程為:.
(2)設(shè)點(diǎn),,則,,
直線的斜率為,
直線的方程為:,
令得,,
點(diǎn)的坐標(biāo)為,,
點(diǎn)的坐標(biāo)為,,
,,
又點(diǎn),在橢圓上,
,,
,
點(diǎn)在以為直徑的圓上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是兩個不重合的平面,下列選項中,一定能得出平面與平面平行的是( )
A.平面內(nèi)有一條直線與平面平行
B.平面內(nèi)有兩條直線與平面平行
C.平面內(nèi)有一條直線與平面內(nèi)的一條直線平行
D.平面與平面不相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,若(,,p為常數(shù)),則稱為“等方差數(shù)列”.下列對“等方差數(shù)列”的判斷,其中正確的為( )
A.若是等方差數(shù)列,則是等差數(shù)列
B.若是等方差數(shù)列,則是等方差數(shù)列
C.是等方差數(shù)列
D.若是等方差數(shù)列,則(,k為常數(shù))也是等方差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了余弦定理后,老師布置了一個課外任務(wù),讓同學(xué)們自己制作一些直角三角形、銳角三角形或鈍角三角形的模型,現(xiàn)在李明和王強(qiáng)同學(xué)已經(jīng)有了兩根長度分別為和的鐵絲.
(1)如果他們希望能夠制作一個直角三角形,那么他們需要的第三根鐵絲的長度應(yīng)該是多少?
(2)如果他們希望能夠制作一個鈍角三角形,那么他們需要的第三根鐵絲的長度應(yīng)該在什么范圍?制作一個銳角三角形呢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓上一點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為B,F(xiàn)為橢圓的右焦點(diǎn),AF⊥BF,∠ABF=,,,則橢圓的離心率的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: ,對于任意實(shí)數(shù)k,下列直線被橢圓E截得的弦長與l:y=kx+1被橢圓E截得的弦長不可能相等的是( )
A. kx+y+k=0 B. kx-y-1=0
C. kx+y-k=0 D. kx+y-2=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,, ,,,,為側(cè)棱上一點(diǎn).
(1)若,求證:平面;
(2)求證:平面平面;
(3)在側(cè)棱上是否存在點(diǎn),使得平面? 若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com