【題目】下列關(guān)于等差數(shù)列和等比數(shù)列的敘述正確的是( )
A.若非常數(shù)列為等差數(shù)列,則也可能是等差數(shù)列
B.若非常數(shù)列為等比數(shù)列,則不可能是等差數(shù)列
C.若數(shù)列的前n項(xiàng)和,則數(shù)列可能是等差數(shù)列
D.若等差數(shù)列的前n項(xiàng)和有最大值,則公差d可能大于零
【答案】C
【解析】
由題意結(jié)合等差數(shù)列的定義可判斷A;舉出反例可判斷B;舉出例子可判斷C;設(shè)數(shù)列的首項(xiàng)為,公差為,由等差數(shù)列前n項(xiàng)和的函數(shù)特性可判斷D;即可得解.
對于A,設(shè)數(shù)列的公差為,則,由、不為定值可知不為定值,故不可能是等差數(shù)列,故A錯(cuò)誤;
對于B,若,則,此時(shí)為等差數(shù)列,故B錯(cuò)誤;
對于C,若,則,此時(shí),數(shù)列是等差數(shù)列,故C正確;
對于D,設(shè)數(shù)列的首項(xiàng)為,公差為,
則,若,結(jié)合二次函數(shù)的圖象與性質(zhì)可知無最大值,故D錯(cuò)誤.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%.
①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹落實(shí)中央省市關(guān)于新型冠狀病毒肺炎疫情防控工作要求,積極應(yīng)對新型冠狀病毒疫情,切實(shí)做好2020年春季開學(xué)工作,保障校園安全穩(wěn)定,普及防控知識,確保師生生命安全和身體健康.某校開學(xué)前,組織高三年級800名學(xué)生參加了“疫情防控”網(wǎng)絡(luò)知識競賽(滿分150分).已知這800名學(xué)生的成績均不低于90分,將這800名學(xué)生的成績分組如下:第一組,第二組,第三組,第四組,第五組,第六組,得到的頻率分布直方圖如圖所示.
(1)求的值并估計(jì)這800名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)該!叭悍廊嚎亍倍讲榻M為更好地督促高三學(xué)生的“個(gè)人防控”,準(zhǔn)備從這800名學(xué)生中取2名學(xué)生參與督查工作,其取辦法是:先在第二組第五組第六組中用分層抽樣的方法抽取6名學(xué)生,再從這6名學(xué)生中隨機(jī)抽取2名學(xué)生.記這2名學(xué)生的競賽成績分別為.求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有40位同學(xué),座位號記為,用下面的隨機(jī)數(shù)表選取5組數(shù)作為參加青年志愿者活動(dòng)的5位同學(xué)的座位號.
4954 4454 8217 3793 2378 8735 2096 4384 2634 9164
5724 5506 8877 0474 4767 2176 3350 2583 9212 0767 5086
選取方法是從隨機(jī)數(shù)表第一行的第11列和第12列數(shù)字開始,由左到右依次選取兩個(gè)數(shù)字,則選出來的第5個(gè)志愿者的座位號是( )
A.09B.20C.37D.38
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017安徽蚌埠一模)已知橢圓C:=1(a>b>0)的離心率為,F1,F2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上任意一點(diǎn),且△PF1F2的周長是8+2.
(1)求橢圓C的方程;
(2)設(shè)圓T:(x-2)2+y2=,過橢圓的上頂點(diǎn)M作圓T的兩條切線交橢圓于E,F兩點(diǎn),求直線EF的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知圓的圓心坐標(biāo)為,半徑為,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為: (為參數(shù))
(1)求圓和直線的極坐標(biāo)方程;
(2)點(diǎn) 的極坐標(biāo)為,直線與圓相較于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在矩形中,已知分別為和的中點(diǎn),對角線與交于點(diǎn),沿把矩形折起,使兩個(gè)半平面所成二面角為60°,如圖(2).
(1)求證:;
(2)求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com