【題目】某班有40位同學,座位號記為,用下面的隨機數(shù)表選取5組數(shù)作為參加青年志愿者活動的5位同學的座位號.

4954 4454 8217 3793 2378 8735 2096 4384 2634 9164

5724 5506 8877 0474 4767 2176 3350 2583 9212 0767 5086

選取方法是從隨機數(shù)表第一行的第11列和第12列數(shù)字開始,由左到右依次選取兩個數(shù)字,則選出來的第5個志愿者的座位號是( )

A.09B.20C.37D.38

【答案】B

【解析】

根據(jù)隨機數(shù)表法的方法進行,每次選兩個數(shù)字,選過的兩個數(shù)字不要,即可選出正確答案.

解析:由題意結(jié)合隨機數(shù)表可得由左到右依次選取的兩個數(shù)字為17,37,23,35,20,故選出來的第5個志愿者的座位號是20.

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點的橫坐標都縮短為原來的倍,縱坐標坐標都伸長為原來的倍,得到曲線,在極坐標系(與直角坐標系取相同的單位長度,且以原點為極點,以軸非負半軸為極軸)中,直線的極坐標方程為

(1)求直線和曲線的直角坐標方程;

(2)設(shè)點是曲線上的一個動點,求它到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2019年連續(xù)六個月(5-10)月)的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應的折線圖,如圖所示.

1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并據(jù)此預測該公司20205月份的利潤;

2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,但新材料的不穩(wěn)定性會導致材料損壞的年限不同,現(xiàn)對兩種型號的新型材料對應的產(chǎn)品各100件進行科學模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計表(表).若從產(chǎn)品使用壽命的角度考慮,甲公司的負責人選擇采購哪款新型材料更好?

使用壽命

1個月

2個月

3個月

4個月

總計

材料類型

20

35

35

10

100

10

30

40

20

100

參考數(shù)據(jù):,.

參考公式:回歸直線方程,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當x0,f(x)=-x2+ax.

(1)a=-2,求函數(shù)f(x)的解析式;

(2)若函數(shù)f(x)R上的單調(diào)減函數(shù),

a的取值范圍;

若對任意實數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某創(chuàng)業(yè)投資公司計劃在2010年向某企業(yè)投入800萬元用于開發(fā)新產(chǎn)品,并在今后若干年內(nèi),每年的投入資金都比上一年減少20%.估計2010年可獲得投資回報收入400萬元,由于該項投資前景廣闊,預計今后的投資回報收入每年都會比上一年增加25%.

)設(shè)第年(2010年為第一年)的投入資金為萬元,投資回報收入為萬元,求的表達式;

)從哪一年開始,該投資公司前幾年的投資回報總收入將超過總投入?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于等差數(shù)列和等比數(shù)列的敘述正確的是(

A.若非常數(shù)列為等差數(shù)列,則也可能是等差數(shù)列

B.若非常數(shù)列為等比數(shù)列,則不可能是等差數(shù)列

C.若數(shù)列的前n項和,則數(shù)列可能是等差數(shù)列

D.若等差數(shù)列的前n項和有最大值,則公差d可能大于零

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于,兩點,且以為直徑的圓過橢圓的右頂點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, 分別為、的中點, , .

(1)求證:平面平面

(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某射擊運動員,每次擊中目標的概率都是.現(xiàn)采用隨機模擬的方法估計該運動員射擊次至少擊中次的概率:先由計算器算出之間取整數(shù)值的隨機數(shù),指定,表示沒有擊中目標,,,,,,表示擊中目標;因為射擊次,故以每個隨機數(shù)為一組,代表射擊次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下組隨機數(shù):

據(jù)此估計,該射擊運動員射擊次至少擊中次的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案