【題目】如圖,在四棱錐P-ABCD中,PA平面ABCD,在四邊形ABCD中,ABC=,AB=4,BC=3,CD=,AD=2PA=4.

1)證明:CD平面PAD;

2)求二面角B-PC-D的余弦值..

【答案】1)證明見詳解;(2

【解析】

1)連接,證出,利用線面垂直的性質(zhì)定理可得,再利用線面垂直的判定定理即可證出.

2)以點(diǎn)為坐標(biāo)原點(diǎn),的延長(zhǎng)線為軸,過點(diǎn)平行線為軸,建立空間直角坐標(biāo)系,分別求出平面的一個(gè)法向量與平面的一個(gè)法向量,利用向量的數(shù)量積即可求解.

1)連接,由ABC=,AB=4,BC=3

,

又因?yàn)?/span>CD=AD=2,

所以,即

因?yàn)?/span>PA⊥平面ABCD,平面ABCD,

所以,

因?yàn)?/span>,所以CD平面PAD

2)以點(diǎn)為坐標(biāo)原點(diǎn),的延長(zhǎng)線為,軸,

過點(diǎn)平行線為軸,建立空間直角坐標(biāo)系,如圖:

與點(diǎn),

,即,

所以,

所以

所以,,,

,,,

設(shè)平面的一個(gè)法向量為,

,即,

,則,,即,

設(shè)平面的一個(gè)法向量為,

,即

,則,即

,

所以二面角B-PC-D的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F是拋物線Cy22pxp0)的焦點(diǎn),過點(diǎn)F的直線與拋物線相交于A,B兩點(diǎn)(點(diǎn)Ax軸上方),與y軸的正半軸相交于點(diǎn)N,點(diǎn)Q是拋物線不同于A,B的點(diǎn),若2,則|BF||BA||BN|_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)若在定義域內(nèi)單調(diào)遞增,求的取值范圍;

)若存在極大值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,將沿對(duì)角線向上翻折,若翻折過程中長(zhǎng)度在內(nèi)變化,則點(diǎn)所形成的運(yùn)動(dòng)軌跡的長(zhǎng)度為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的底面為正方形,,,是棱的中點(diǎn),平面與直線相交于點(diǎn)

1)證明:直線平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面平面,四邊形是邊長(zhǎng)為4的正方形,,分別是,的中點(diǎn).

(1)求證:平面;

(2)若直線與平面所成角等于,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=Acosωx)(A0,ω0,0φπ)的圖象的一個(gè)最高點(diǎn)為(),與之相鄰的一個(gè)對(duì)稱中心為,將fx)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)gx)的圖象,則(

A.gx)為偶函數(shù)

B.gx)的一個(gè)單調(diào)遞增區(qū)間為

C.gx)為奇函數(shù)

D.函數(shù)gx)在上有兩個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對(duì)產(chǎn)品進(jìn)行抽查檢測(cè),現(xiàn)對(duì)某條生產(chǎn)線上隨機(jī)抽取的100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對(duì)比,并對(duì)每個(gè)產(chǎn)品進(jìn)行綜合評(píng)分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值,并求綜合評(píng)分的中位數(shù);

2)用樣本估計(jì)總體,視頻率作為概率,在該條生產(chǎn)線中隨機(jī)抽取3個(gè)產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓,點(diǎn)是圓內(nèi)一個(gè)定點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為橢圓.

1分別為橢圓的左右焦點(diǎn),為橢圓上任意一點(diǎn),若,求的面積;

2)如圖,若橢圓,橢圓,且),則稱橢圓是橢圓倍相似橢圓.已知是橢圓倍相似橢圓,若橢圓的任意一條切線交橢圓于兩點(diǎn),試求弦長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案