【題目】如圖,長方體的底面為正方形,,,,,是棱的中點(diǎn),平面與直線相交于點(diǎn).
(1)證明:直線平面;
(2)求二面角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)推導(dǎo)出,設(shè)點(diǎn)為的中點(diǎn),連接,,推導(dǎo)出平面,平面,從而平面平面,由此能證明平面;
(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求出二面角的正弦值.
(1)證明:平面平面,
平面平面,
平面平面,
,由題意得,
設(shè)點(diǎn)為的中點(diǎn),連接,,
是棱的中點(diǎn),,
平面,平面,
平面,
,,
,
平面,平面,
平面,
,
平面平面,
平面,
平面;
(2)解:以為原點(diǎn),為軸,為軸,為軸,建立如圖所示的空間直角坐標(biāo)系,
,,
∴,,,,
,,,
設(shè)平面的法向量,,,
則,取,得,
設(shè)平面的法向量,
則,取,得,
設(shè)二面角的平面角為,
由,
,
二面角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),離心率為
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于,兩點(diǎn),若以,為鄰邊的平行四邊形的頂點(diǎn)在橢圓上,求證:平行四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是九江市2019年4月至2020年3月每月最低氣溫與最高氣溫(℃)的折線統(tǒng)計(jì)圖:已知每月最低氣溫與最高氣溫的線性相關(guān)系數(shù)r=0.83,則下列結(jié)論錯誤的是( )
A.每月最低氣溫與最高氣溫有較強(qiáng)的線性相關(guān)性,且二者為線性正相關(guān)
B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10月
C.9﹣12月的月溫差相對于5﹣8月,波動性更大
D.每月最高氣溫與最低氣溫的平均值在前6個(gè)月逐月增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,.以,為鄰邊作平行四邊形,連接和.
(1)求證:平面;
(2)線段上是否存在點(diǎn),使平面與平面垂直?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二某班共有45人,學(xué)號依次為1、2、3、…、45,現(xiàn)按學(xué)號用系統(tǒng)抽樣的辦法抽取一個(gè)容量為5的樣本,已知學(xué)號為6、24、33的同學(xué)在樣本中,那么樣本中還有兩個(gè)同學(xué)的學(xué)號應(yīng)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,在四邊形ABCD中,∠ABC=,AB=4,BC=3,CD=,AD=2,PA=4.
(1)證明:CD⊥平面PAD;
(2)求二面角B-PC-D的余弦值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是雙曲線的左、右焦點(diǎn),點(diǎn)P為上異于頂點(diǎn)的點(diǎn),直線l分別與以,為直徑的圓相切于A,B兩點(diǎn),若向量,的夾角為,則=___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜率為的直線交拋物線于兩點(diǎn),已知點(diǎn)的橫坐標(biāo)比點(diǎn)的橫坐標(biāo)大4,直線交線段于點(diǎn),交拋物線于點(diǎn).
(1)若點(diǎn)的橫坐標(biāo)等于0,求的值;
(2)求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com