【題目】已知下圖中,四邊形 ABCD是等腰梯形, , ,O、Q分別為線段AB、CD的中點(diǎn),OQEF的交點(diǎn)為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得,連結(jié)AD、BC,得一幾何體如圖所示.

(Ⅰ)證明:平面ABCD平面ABFE;

(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:(1)先根據(jù), ⊥平面,,結(jié)合勾股定理,由線面垂直判定定理可得 平面,由面面垂直判定定理可得結(jié)論;(2)為原點(diǎn), 所在的直線為軸建立空間直角坐標(biāo)系,可求得面的一個(gè)法向量的一個(gè)法向量,求出向量夾角即可.

試題解析: (1)證明:在圖中,四邊形為等腰梯形, 分別為線段的中點(diǎn),

為等腰梯形的對(duì)稱軸,又// ,

、,

在圖中,∵,

由①及,得⊥平面,,

, 平面,

平面平面平面;

(2)在圖中,由 , ,易得, ,

為原點(diǎn), 所在的直線為軸建立空間直角坐標(biāo)系,如圖所示,

、

,

設(shè)是平面的一個(gè)法向量,

,得,

,得

同理可得平面的一個(gè)法向量

設(shè)所求銳二面角的平面角為

=

所以平面ADE與平面所成銳二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于的一元二次方程

(1)若是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù), 是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;

(2)若時(shí)從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上, , , , , 均可為一個(gè)三角形的三邊長(zhǎng),則稱函數(shù)三角形函數(shù).已知函數(shù)在區(qū)間上是三角形函數(shù),則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與拋物線共焦點(diǎn),拋物線上的點(diǎn)My軸的距離等于,且橢圓與拋物線的交點(diǎn)Q滿足

(I)求拋物線的方程和橢圓的方程;

(II)過(guò)拋物線上的點(diǎn)作拋物線的切線交橢圓于 兩點(diǎn),求此切線在x軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某舉重運(yùn)動(dòng)隊(duì)為了解隊(duì)員的體重分布情況,從50名隊(duì)員中抽取10名作調(diào)查.抽取時(shí)現(xiàn)將全體隊(duì)員隨機(jī)按1~50編號(hào),并按編號(hào)順序平均分成10組,每組抽一名,且各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣.

(1)若第5組抽出的號(hào)碼為22,寫(xiě)出所有被抽取出來(lái)的編號(hào);

(2)分別統(tǒng)計(jì)被抽取的10名隊(duì)員的體重(單位:公斤),獲得如圖所示的體重?cái)?shù)據(jù)的莖葉圖,根據(jù)莖葉圖求該樣本的平均數(shù)和中位數(shù);

(3)在題(2)的莖葉圖中,從題中不輕于73公斤的隊(duì)員中隨機(jī)抽取2名隊(duì)員的體重?cái)?shù)據(jù),求體重為81公斤的隊(duì)員被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以, , , , 分組的頻率分布直方圖如圖所示.

(1)求直方圖中的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)在月平均用電量在, , 的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為: .

(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)過(guò)點(diǎn)且與直線平行的直線 兩點(diǎn),求點(diǎn), 兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為16.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)橢圓的頂點(diǎn)的直線交橢圓于另一點(diǎn),交軸于點(diǎn),若、成等比數(shù)列,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為.

(Ⅰ)若為等邊三角形,求橢圓的方程;

(Ⅱ)若橢圓的短軸長(zhǎng)為,過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案