【題目】已知焦點在軸上的拋物線過點,橢圓的兩個焦點分別為,其中的焦點重合,過點的長軸垂直的直線交,兩點,且,曲線是以坐標(biāo)原點為圓心,以為半徑的圓.

(1)求的標(biāo)準(zhǔn)方程;

(2)若動直線相切,且與交于,兩點,求的面積的取值范圍.

【答案】(1) 的標(biāo)準(zhǔn)方程為.的標(biāo)準(zhǔn)方程為.(2)

【解析】

(1)先由已知設(shè)拋物線的方程為,根據(jù)拋物線過點,即可求出拋物線方程,得出坐標(biāo),再由題意可得,進(jìn)而可求出橢圓方程;又曲線是以坐標(biāo)原點為圓心,以為半徑的圓,根據(jù)坐標(biāo)坐標(biāo)得出的值,即可寫出圓的標(biāo)準(zhǔn)方程;

(2)先由直線相切,得圓心到直線的距離為1,因此,根據(jù)題意分類討論:當(dāng)直線的斜率不存在和斜率存在兩種情況,結(jié)合韋達(dá)定理和弦長公式,分別求出的范圍即可.

解:(1)由已知設(shè)拋物線的方程為,

,解得,即的標(biāo)準(zhǔn)方程為.

,不妨設(shè)橢圓的方程為,

,得,所以,

,所以,,

的標(biāo)準(zhǔn)方程為.

易知,所以的標(biāo)準(zhǔn)方程為.

(2)因為直線相切,所以圓心到直線的距離為1.所以.

當(dāng)直線的斜率不存在時,其方程為,易知兩種情況所得到的的面積相等.

,得.

不妨設(shè),,則,

此時.

當(dāng)直線的斜率存在時,設(shè)其方程為,

,即.

,得,

所以 恒成立.

設(shè),

,.

所以.

,則

所以

,

,則,

易知區(qū)間上單調(diào)遞減,所以.

綜上,的面積的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市10萬名男生的身高服從正態(tài)分布.現(xiàn)從某學(xué)校高中男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm190cm之間,將身高的測量結(jié)果按如下方式分成5組:第1[160,166),第2[166,172),...,第5[184,190]下表是按上述分組方法得到的頻率分布表:

分組

[160,166)

[166,172)

[172,178)

[178,184)

[184,190]

人數(shù)

3

10

24

10

3

50個數(shù)據(jù)的平均數(shù)和方差分別比10萬個數(shù)據(jù)的平均數(shù)和方差多16.68,且這50個數(shù)據(jù)的方差為.(同組中的身高數(shù)據(jù)用該組區(qū)間的中點值作代表)

(1),;

(2)給出正態(tài)分布的數(shù)據(jù):,.

(i)若從這10萬名學(xué)生中隨機(jī)抽取1名,求該學(xué)生身高在(169,179)的概率;

(ii)若從這10萬名學(xué)生中隨機(jī)抽取1萬名,記為這1萬名學(xué)生中身高在(169,184)的人數(shù),求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域為的奇函數(shù),且當(dāng)時,,其中是常數(shù).

1)求的解析式;

2)求實數(shù)的值,使得函數(shù)的最小值為;

3)已知函數(shù)滿足:對任何不小于的實數(shù),都有,其中為不小于的正整數(shù)常數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè):實數(shù)滿足 ,:實數(shù)滿足

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)若,對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個零點為.

(I)求曲線在點處的切線方程;

(II)求函數(shù)的單調(diào)區(qū)間;

(III)求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價收費(fèi),超出的部分按議價收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點。

1)證明: 平面;

2)設(shè) ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,側(cè)棱⊥底面的中點.

(Ⅰ)求證:

(Ⅱ)證明:

查看答案和解析>>

同步練習(xí)冊答案