【題目】已知函數(shù)是定義域為的奇函數(shù),且當時,,其中是常數(shù).
(1)求的解析式;
(2)求實數(shù)的值,使得函數(shù),的最小值為;
(3)已知函數(shù)滿足:對任何不小于的實數(shù),都有,其中為不小于的正整數(shù)常數(shù),求證:.
【答案】(1);(2);(3)證明見解析.
【解析】
(1)由函數(shù)是上的奇函數(shù)得出,可解出,再令,求出,利用奇函數(shù)的定義得出的表達式,從而得出函數(shù)在上的解析式;
(2)由題意得出,令,可得出,再分、、三種情況討論,分析該二次函數(shù)在區(qū)間上的單調(diào)性,得出該二次函數(shù)的最小值為,求出的值;
(3)先求出,任取且,利用作差法證明出,由此得出,,,,再利用同向不等式的可加性可得出所證不等式成立.
(1)由于函數(shù)是上的奇函數(shù),則,
那么,當時,.
當時,,,
.也適合.
因此,;
(2)當時,,
則,
令,則,
該二次函數(shù)圖象開口向上,對稱軸為直線.
①當時,即當時,函數(shù)在區(qū)間上單調(diào)遞增,此時,,解得,合乎題意;
②當時,即當時,函數(shù)在上取得最小值,即,整理得,解得,
均不符合題意;
③當時,即當時,函數(shù)在區(qū)間上單調(diào)遞減,
此時,,不合乎題意.
綜上所述,當時,函數(shù)在區(qū)間上的最小值為;
(3)當時,.
當時,,則,
整理得,解得.
任取且,
,
且,,,所以,,
,,,,
上述不等式全部相加得.
科目:高中數(shù)學 來源: 題型:
【題目】將三棱錐與拼接得到如圖所示的多面體,其中,,,分別為,,,的中點,.
(1)當點在直線上時,證明:平面;
(2)若與均為面積為的等邊三角形,求該多面體體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,己知拋物線,直線交拋物線于兩點,是拋物線外一點,連接分別交地物線于點,且.
(1)若,求點的軌跡方程.
(2)若,且平行x軸,求面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為研究學生的身體素質(zhì)與體育鍛煉時間的關系,對該校300名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘).
平均每天鍛煉的時間/分鐘 | ||||||
總人數(shù) | 34 | 51 | 59 | 66 | 65 | 25 |
將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 40 | 160 | |
合計 |
(2)通過計算判斷,是否能在犯錯誤的概率不超過0.05的前提下認為“鍛煉達標”與性別有關?
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在區(qū)間(0,2]上的值不小于6,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知焦點在軸上的拋物線過點,橢圓的兩個焦點分別為,,其中與的焦點重合,過點與的長軸垂直的直線交于,兩點,且,曲線是以坐標原點為圓心,以為半徑的圓.
(1)求與的標準方程;
(2)若動直線與相切,且與交于,兩點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,離心率為,是橢圓上的一個動點,且面積的最大值為.
(1)求橢圓的方程;
(2)設直線斜率為,且與橢圓的另一個交點為,是否存在點,使得若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com