【題目】脫貧是政府關注民生的重要任務,了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取個農戶,考察每個農戶的年收入與年積蓄的情況進行分析,設第個農戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得

(Ⅰ)已知家庭的年結余對年收入具有線性相關關系,求線性回歸方程;

(Ⅱ)若該地區(qū)的農戶年積蓄在萬以上,即稱該農戶已達小康生活,請預測農戶達到小康生活的最低年收入應為多少萬元?

附:在 中, 其中為樣本平均值.

【答案】(Ⅰ) ;(Ⅱ)萬元.

【解析】試題分析:(Ⅰ)利用題中所給數(shù)據(jù)和最小二乘法求出相關系數(shù),進而求出線性回歸方程;(Ⅱ)利用線性回歸方程進行預測.

試題解析:(Ⅰ)由題意知所以線性回歸方程為

(Ⅱ)令

由此可預測該農戶的年收入最低為萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第年需要付出設備的維修和工人工資等費用的信息如下圖 .

(1;

(2引進這種設備后,第幾年后該公司開始獲利;

(3這種設備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為為參數(shù)).

(1)直線且與曲線相切,求直線的極坐標方程;

(2)點與點關于軸對稱,求曲線上的點到點的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓C:(x﹣2)2+(y+1)2=5,過點P(5,0)且斜率為k的直線與圓C相交于不同的兩點A,B.

(I)求k的取值范圍;

(Ⅱ)若弦長|AB|=4,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某班學生的會考合格率,要從該班70人中選30人進行考察分析,則70人的會考成績的全體是______,樣本是______,樣本量是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1若函數(shù)在定義域上是單調增函數(shù),求的最小值;

2若方程在區(qū)間上有兩個不同的實根,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于簡單隨機抽樣,下列說法正確的是(

①它要求被抽取樣本的總體的個體數(shù)有限;

②它是從總體中逐個進行抽取的,在實踐中操作起來也比較方便;

③它是一種不放回抽樣;

④它是一種等可能抽樣,在整個抽樣過程中,每個個體被抽到的機會相等,從而保證了這種抽樣方法的公平性.

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在復平面內,復數(shù)3-4i,i(2+i)對應的點分別是A,B,則線段AB的中點C對應的復數(shù)為(  )

A.-2+2iB.2-2i

C.-1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當天賣不完,剩下的蛋糕作垃圾處理現(xiàn)需決策此蛋糕店每天應該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量單位:個,得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率若蛋糕店一天制作17個生日蛋糕

1求當天的利潤單位:元關于當天需求量單位:個,的函數(shù)解析式;

2求當天的利潤不低于750元的概率

查看答案和解析>>

同步練習冊答案