【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量單位:個,得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率若蛋糕店一天制作17個生日蛋糕

1求當(dāng)天的利潤單位:元關(guān)于當(dāng)天需求量單位:個,的函數(shù)解析式;

2求當(dāng)天的利潤不低于750元的概率

【答案】1;2

【解析】

試題分析:1,分別求出函數(shù)的表達(dá)式,即可求解函數(shù)的解析式;2設(shè)當(dāng)天的利潤不低于750元為事件,得出需求量不低于個,即可求解當(dāng)天的利潤不低于元的概率

試題解析:1當(dāng)時,;

當(dāng)時,

2設(shè)當(dāng)天的利潤不低于750元為事件

2利潤不低于等價于需求量不低于16個,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進(jìn)行分析,設(shè)第個農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得

(Ⅰ)已知家庭的年結(jié)余對年收入具有線性相關(guān)關(guān)系,求線性回歸方程;

(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達(dá)小康生活,請預(yù)測農(nóng)戶達(dá)到小康生活的最低年收入應(yīng)為多少萬元?

附:在 中, 其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中各項都大于1,前項和為,且滿足.

1求數(shù)列的通項公式;

2,求數(shù)列的前項和

3求使得對所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

將圓上每一點的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍得到曲線

1)寫出曲線的參數(shù)方程;

2)以坐標(biāo)原點為極點, 軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,若分別為曲線和直線上的一點,求的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

將圓上每一點的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?倍得到曲線

1寫出曲線的參數(shù)方程;

2以坐標(biāo)原點為極點,軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,若分別為曲線和直線上的一點,求的最近距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,側(cè)面底面中點,.

(I)在線段上是否存在點,使得//平面,指出點的位置并證明;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為測評班級學(xué)生對任課教師的滿意度,采用100分制打分的方式來計分,規(guī)定滿意度不低于98分,則評價該教師為優(yōu)秀,現(xiàn)從某班學(xué)生中隨機抽取10名,以下莖葉圖記錄了他們對某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個位數(shù)字為葉);

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

(2)求從這10人中隨機選取3人,至多有1人評價該教師是優(yōu)秀的概率;

(3)以這10人的樣本數(shù)據(jù)來估計整個班級的總體數(shù)據(jù),若從該班任選3人,記表示抽到評價該教師為優(yōu)秀的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修,可供利用的舊墻足夠長),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進(jìn)出口,如圖2所示,已知舊墻的維修費用為45/m,新墻的造價為180/m, 設(shè)利用舊墻的長度為(單位: ),修建此矩形場地圍墻的總費用為(單位:元).

)將表示為的函數(shù);

)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與曲線有三個不同的交點.

(1)求圓的方程;

(2)已知點軸上的動點, , 分別切圓 兩點.

①若,求及直線的方程;

②求證:直線恒過定點.

查看答案和解析>>

同步練習(xí)冊答案