【題目】在正四棱錐中,底面正方形的邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2,則異面直線(xiàn)所成角的大小為__________

【答案】

【解析】

連接AC,交BDO,連接VO,可得對(duì)角線(xiàn)ACBD互相垂直,再在三角形VBD中,根據(jù)VBVDOBD中點(diǎn),證出VO、BD互相垂直,最后根據(jù)直線(xiàn)與平面垂直的判定理證出BD⊥平面ACV,從而BDVA,即異面直線(xiàn)VABD所成角大。

如圖所示,連接AC,交BDO,連接VO

∵四邊形ABCD是正方形,

ACBD,OBD的中點(diǎn)

又∵正四棱錐VABCD中,VBVD

VOBD

ACVOO,AC、VO平面ACV

BD⊥平面ACV

VA平面ACV

BDVA;

即異面直線(xiàn)VABD所成角等于..

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品每千克定價(jià)10元,商家采取了如下的促銷(xiāo)方式:

一次購(gòu)買(mǎi)量

促銷(xiāo)方式

不多于20千克

原價(jià)出售

多于20千克且不多于40千克

不多于20千克部分,原價(jià)出售

多于20千克部分,九折出售

多于40千克

不多于20千克部分,原價(jià)出售

多于20千克且不多于40千克部分,九折出售

多于40千克部分八折出售

1)求一次購(gòu)買(mǎi)(單位:千克),此商品的花費(fèi)(單位:元)的函數(shù)解析式;

2)某人一次購(gòu)買(mǎi)此商品400元,問(wèn)他能購(gòu)得此商品多少千克?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l1ax﹣y+b=0,l2bx﹣y﹣a=0,則它們的圖象可能為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的是(

A.各個(gè)面都是三角形的幾何體是三棱錐

B.以三角形的一條邊所在直線(xiàn)為旋轉(zhuǎn)軸,其余兩邊繞旋轉(zhuǎn)軸旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐

C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)都相等,則該棱錐可能是六棱錐

D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線(xiàn)都是母線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲和乙玩一個(gè)猜數(shù)游戲,規(guī)則如下:已知六張紙牌上分別寫(xiě)有1﹣六個(gè)數(shù)字,現(xiàn)甲、乙兩人分別從中各自隨機(jī)抽取一張,然后根據(jù)自己手中的數(shù)推測(cè)誰(shuí)手上的數(shù)更大.甲看了看自己手中的數(shù),想了想說(shuō):我不知道誰(shuí)手中的數(shù)更大;乙聽(tīng)了甲的判斷后,思索了一下說(shuō):我知道誰(shuí)手中的數(shù)更大了.假設(shè)甲、乙所作出的推理都是正確的,那么乙手中可能的數(shù)構(gòu)成的集合是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

在如圖所示的多面體中,四邊形都為矩形。

)若,證明:直線(xiàn)平面;

)設(shè)分別是線(xiàn)段, 的中點(diǎn),在線(xiàn)段上是否存在一點(diǎn),使直線(xiàn)平面?請(qǐng)證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿(mǎn)足對(duì)于任意實(shí)數(shù),都有,且當(dāng)時(shí),

1)判斷的奇偶性并證明;

2)判斷的單調(diào)性,并求當(dāng)時(shí),的最大值及最小值;

3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】氣象部門(mén)提供了某地區(qū)今年六月分(30天)的日最高氣溫的統(tǒng)計(jì)表如下:

日最高氣溫t(單位:

天數(shù)

6

12

由于工作疏忽,統(tǒng)計(jì)表被墨水污染,數(shù)據(jù)不清楚,但氣象部門(mén)提供的資料顯示,六月份的日最高氣溫不高于的頻率為0.9.

(1)若把頻率看作概率,求,的值;

(2)把日最高氣溫高干稱(chēng)為本地區(qū)的“高溫天氣”,根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此推測(cè)是否有95%的把握認(rèn)為本地區(qū)“高溫天氣”與西瓜“旺銷(xiāo)”有關(guān)?說(shuō)明理由.

高溫天氣

非高溫天氣

合計(jì)

旺銷(xiāo)

1

不旺銷(xiāo)

6

合計(jì)

P(K2≥R)

0.10

0.050

0.025

0.010

0.005

0.001

K

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的頂點(diǎn)坐標(biāo)分別是A7,﹣3),B2,﹣8),C5,1),

1)求AB垂直平分線(xiàn)的方程(化為一般式);

2)求ABC外接圓的方程;

查看答案和解析>>

同步練習(xí)冊(cè)答案