【題目】已知拋物線,點為直線上任一點,過點作拋物線的兩條切線,切點分別為,

1)證明,三點的縱坐標(biāo)成等差數(shù)列;

2)已知當(dāng)點坐標(biāo)為時,,求此時拋物線的方程;

3)是否存在點,使得點關(guān)于直線的對稱點在拋物線上,其中點滿足,若存在,求點的坐標(biāo);若不存在,說明理由.

【答案】(1)證明見解析;(2) ;(3) 存在一點滿足題意.

【解析】

(1)設(shè),求導(dǎo),則可求出在,處的切線方程,再聯(lián)立切線方程分析即可.
(2)根據(jù)(1)中的切線方程,代入則可得到直線的方程,再聯(lián)立拋物線求弦長列式求解即可.

(3)分情況,當(dāng)的縱坐標(biāo)兩種情況,求出點的坐標(biāo)表達(dá)式,再利用垂直進(jìn)行求解分析是否存在即可.

(1) 設(shè),求導(dǎo)有,故在處的切線方程為,,,

同理在處的切線方程為,

聯(lián)立切線方程有,化簡得,

的縱坐標(biāo)為,因為,故,,三點的縱坐標(biāo)成等差數(shù)列.
(2)(1)有在處的切線方程為,因為,

所以,,又切線過,,同理,均滿足直線方程,

故直線 ,聯(lián)立 ,

,

,解得,故拋物線.

(3)設(shè),由題意得,中點,

又直線斜率,故設(shè) .

的中點在直線,中點也在直線,

代入得.在拋物線上,.

所以.即點

(1)當(dāng),,此時點滿足

(2) 當(dāng),,此時,.

.,所以,不成立,

,因為,此時直線平行于,又因為,

故直線與直線不垂直,與題設(shè)矛盾,,不存在符合題意的.

綜上所述,僅存在一點滿足題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線平面,直線平行四邊形,四棱錐的頂點在平面上,,,,分別是的中點.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長,“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,為橢圓上不與左右頂點重合的任意一點,分別為的內(nèi)心、重心,當(dāng)軸時,橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C頂點在坐標(biāo)原點,焦點F在Y軸的非負(fù)半軸上,點是拋物線上的一點.

(1)求拋物線C的標(biāo)準(zhǔn)方程

(2)若點P,Q在拋物線C上,且拋物線C在點P,Q處的切線交于點S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當(dāng)P,Q在C上運動時,△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓.

(1)若過拋物線的焦點的直線與圓相切,求直線方程;

(2)在(1)的條件下,若直線交拋物線,兩點,軸上是否存在點使為坐標(biāo)原點)?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)檢部門從某超市銷售的甲、乙兩種食用油中分別隨機(jī)抽取100桶檢測某項質(zhì)量指標(biāo),由檢測結(jié)果得到如圖的頻率分布直方圖:

(I)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為,試比較的大。ㄖ灰髮懗龃鸢福;

(Ⅱ)佑計在甲、乙兩種食用油中各隨機(jī)抽取1桶,恰有一個桶的質(zhì)量指標(biāo)大于20,且另—個桶的質(zhì)量指標(biāo)不大于20的概率;

(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值服從正態(tài)分布.其中近似為樣本平均數(shù)近似為樣本方差,設(shè)表示從乙種食用油中隨機(jī)抽取10桶,其質(zhì)量指標(biāo)值位于(14.55, 38.45)的桶數(shù),求的數(shù)學(xué)期望.

注:①同一組數(shù)據(jù)用該區(qū)間的中點值作代表,計算得

②若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】7本不同的書:

1)全部分給6個人,每人至少一本,有多少種不同的分法?

2)全部分給5個人,每人至少一本,有多少種不同的分法?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足2an=2+Sn

1)求證:數(shù)列{an}是等比數(shù)列;

2)設(shè)bn=log2a2n+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案