【題目】同時(shí)滿足兩個(gè)條件:(1)定義域內(nèi)是減函數(shù);(2)定義域內(nèi)是奇函數(shù)的函數(shù)是(
A.f(x)=﹣x|x|
B.
C.f(x)=tanx
D.

【答案】A
【解析】解:A、因?yàn)閒(x)的定義域是R,且f(x)=x|﹣x|=﹣f(x), 所以f(x)是奇函數(shù),
因?yàn)閒(x)=﹣x|x|= ,所以f(x)在定義域上是減函數(shù),
可知符合題中條件,A正確;
B、函數(shù) 在定義域{x|x≠0}不是單調(diào)函數(shù),不符合題意,B不正確;
C、f(x)=tanx在定義域內(nèi)不是單調(diào)函數(shù),C不正確;
D、函數(shù)f(x)的定義域是(0,+∞),關(guān)于原點(diǎn)不對(duì)稱(chēng),不是奇函數(shù),D不正確.
故選A.
【考點(diǎn)精析】關(guān)于本題考查的奇偶性與單調(diào)性的綜合,需要了解奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相反的單調(diào)性才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題中

非零向量滿足,則的夾角為

0的夾角為銳角的充要條件;

必定是直角三角形;

④△ABC的外接圓的圓心為O,半徑為1,若,,則向量在向量方向上的投影為.

以上命題正確的是 __________ (注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車(chē)的“燃油效率”是指汽車(chē)每消耗1升汽油行駛的里程,下圖描述了甲乙丙三輛汽車(chē)在不同速度下的燃油效率情況,下列敘述中正確的是( )

A. 消耗1升汽油,乙車(chē)最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車(chē)中,甲車(chē)消耗汽油最多

C. 甲車(chē)以80千米/小時(shí)的速度1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車(chē)最高限速80千米/小時(shí),相同條件下,在該市用丙車(chē)比乙車(chē)更省油.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)若cos = , π<x< π,求 的值.
(2)已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1(x∈R),若f(x0)= ,x0∈[ , ],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)﹣m(t).
(1)求函數(shù)f(x)的最小正周期及對(duì)稱(chēng)軸方程;
(2)當(dāng)t∈[﹣2,0]時(shí),求函數(shù)g(t)的解析式;
(3)設(shè)函數(shù)h(x)=2|xk|,H(x)=x|x﹣k|+2k﹣8,其中實(shí)數(shù)k為參數(shù),且滿足關(guān)于t的不等式 有解,若對(duì)任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率為, 為坐標(biāo)原點(diǎn).

I)求橢圓的方程.

II)若點(diǎn)為橢圓上一動(dòng)點(diǎn),點(diǎn)與點(diǎn)的垂直平分線l交軸于點(diǎn),的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),求證恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 互相垂直,其中
(1)求sinθ和cosθ的值;
(2)若 , 求cosφ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在六面體中,平面平面 平面, .且, .

(1)求證: 平面;

(2)求銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案