【題目】已知函數(shù)
(1)討論的零點個數(shù);
(2)當時,求證恒成立.
【答案】(1) 或時,有1個零點; 時,有2個零點;; 時,有0個零點.
(2)見解析.
【解析】試題分析:(1)求出k=,令g(x)=,根據(jù)函數(shù)的單調(diào)性求出g(x)的最大值,通過討論k的范圍,判斷函數(shù)的零點個數(shù)即可;
(2)問題轉(zhuǎn)化為e1﹣x+2f(x)﹣2﹣x=2lnx﹣x+e1﹣x≤0,令g(x)=2lnx﹣x+e1﹣x,令h(x)=2﹣x﹣xe1﹣x,根據(jù)函數(shù)的單調(diào)性證明即可;
(1)由已知∵,∴
令
單調(diào)遞增, 單調(diào)遞減
∴
綜上, 或時,有1個零點; 時,有2個零點;; 時,有0個零點.
(2)證明:要證,即證
令
令
,
令,
即,∴單調(diào)遞減.
單調(diào)遞增,
單調(diào)遞減, ,綜上:
科目:高中數(shù)學 來源: 題型:
【題目】某電影院共有1000個座位,票價不分等次,根據(jù)電影院的經(jīng)營經(jīng)驗,當每張票價不超過10元時,票可全部售出;當票價高于10元時,每提高1元,將有30張票不能售出.為了獲得更好的收益,需要給電影院一個合適的票價,基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放映一場電影的成本是5750元,票房收入必須高于成本.用x(元)表示每張票價,用y(元)表示該電影放映一場的純收入(除去成本后的收入). (Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)票價定為多少時,電影放映一場的純收入最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以軸正半軸為始邊的銳角和鈍角的終邊分別與單位圓交于點,若點的橫坐標是,點的縱坐標是.
(1)求的值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】同時滿足兩個條件:(1)定義域內(nèi)是減函數(shù);(2)定義域內(nèi)是奇函數(shù)的函數(shù)是( )
A.f(x)=﹣x|x|
B.
C.f(x)=tanx
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)如果在處取得極值,求的值.
(II)求函數(shù)的單調(diào)區(qū)間.
(III)當時,過點存在函數(shù)曲線的切線,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=f(x)的定義域為(﹣a,0)∪(0,a)(0<a<1),其圖象上任意一點P(x,y)滿足x2+y2=1,則給出以下四個命題:①函數(shù)y=f(x)一定是偶函數(shù);②函數(shù)y=f(x)可能是奇函數(shù);③函數(shù)y=f(x)在(0,a)上單調(diào)遞增④若函數(shù)y=f(x)是偶函數(shù),則其值域為(a2 , 1)其中正確的命題個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域為BCDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度)..
(I)求道路BE的長度;
(Ⅱ)求道路AB,AE長度之和的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有個形狀相同的小球,分別標有不同的數(shù)字,現(xiàn)從袋中隨機摸出個球,并計算摸出的這個球上的數(shù)字之和,記錄后將小球放回袋中攪勻,進行重復試驗.記事件為“數(shù)字之和為”.試驗數(shù)據(jù)如下表:
(1)如果試驗繼續(xù)下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“數(shù)字之和為”的頻率將穩(wěn)定在它的概率附近.試估計“出現(xiàn)數(shù)字之和為”的概率,并求的值;
(2)在(1)的條件下,設定一種游戲規(guī)則:每次摸球,若數(shù)字和為,則可獲得獎金元,否則需交元.某人摸球次,設其獲利金額為隨機變量元,求的數(shù)學期望和方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com