【題目】下列說(shuō)法正確的是( )
A.回歸直線至少經(jīng)過(guò)其樣本數(shù)據(jù)中的一個(gè)點(diǎn)
B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時(shí),我們就說(shuō)如果某人吃地溝油,那么他有99%可能患胃腸癌
C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.將一組數(shù)據(jù)的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,其方差也要加上或減去這個(gè)常數(shù)
【答案】C
【解析】
根據(jù)回歸直線的性質(zhì),可判斷A的真假;根據(jù)獨(dú)立性檢驗(yàn)的相關(guān)知識(shí),可判斷B的真假;根據(jù)數(shù)據(jù)的殘差越小,其模型擬合的精度越高,可判斷C的真假;根據(jù)方差性質(zhì),可判斷D的真假.
回歸直線可以不經(jīng)過(guò)其樣本數(shù)據(jù)中的一個(gè)點(diǎn),則A錯(cuò)誤;
從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時(shí),我們就說(shuō)如果某人吃地溝油,那么他有99%可能患胃腸癌,則B錯(cuò)誤;
在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄,表示數(shù)據(jù)的殘差越小,其模型擬合的精度越高,即C正確;
將一組數(shù)據(jù)的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,其平均數(shù)也加上或減去同一個(gè)常數(shù),則其方差不變,故D錯(cuò)誤,
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查全市學(xué)生的數(shù)學(xué)高考成績(jī),隨機(jī)地抽取某中學(xué)甲、乙兩班各10名同學(xué),獲得成績(jī)數(shù)據(jù)如下(單位:分).
甲:132,108,112,121,113,121,118,128,118,129;
乙:133,107,120,113,122,114,128,118,129,127.
(1)畫(huà)出甲、乙兩班學(xué)生數(shù)學(xué)成績(jī)的莖葉圖,并根據(jù)莖葉圖判斷哪個(gè)班的平均水平較高;
(2)若數(shù)學(xué)成績(jī)不低于120分,則稱(chēng)為“優(yōu)秀”,求從這20名學(xué)生中隨機(jī)選取三人,至多有一人是優(yōu)秀的概率;
(3)以這20人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)學(xué)校的總體成績(jī),若從該校(人數(shù)很多)任選三人,記表示抽到優(yōu)秀學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為,.
(1)求直線與圓相切的概率;
(2)將,,5的值分別作為三條線段的長(zhǎng),求這三條線段能?chē)傻妊切蔚母怕?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為,其左焦點(diǎn)在直線上.
(1)若直線與橢圓交于兩點(diǎn),求的值;
(2)求橢圓的內(nèi)接矩形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里裝有大小均勻的個(gè)小球,其中有紅色球個(gè),編號(hào)分別為;白色球個(gè), 編號(hào)分別為, 從盒子中任取個(gè)小球(假設(shè)取到任何—個(gè)小球的可能性相同).
(1)求取出的個(gè)小球中,含有編號(hào)為的小球的概率;
(2)在取出的個(gè)小球中, 小球編號(hào)的最大值設(shè)為,求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是圓:上一動(dòng)點(diǎn),線段與圓:相交于點(diǎn).直線經(jīng)過(guò),并且垂直于軸,在上的射影點(diǎn)為.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)圓與軸的左、右交點(diǎn)分別為,,點(diǎn)是曲線上的點(diǎn)(點(diǎn)與,不重合),直線,與直線:分別相交于點(diǎn),,求證:以直徑的圓經(jīng)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平行四邊形中,,,,以對(duì)角線為折痕把折起,使點(diǎn)到圖2所示點(diǎn)的位置,使得.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線平面,直線平面,給出下列命題:
①若,則; ②若,則;
③若,則; ④若,則.
其中正確命題的序號(hào)是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com