【題目】如圖,在直三棱柱中,點分別在棱上(均異于端點),且.

(1)求證:平面平面

(2)求證: 平面.

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:(1) 利用面面垂直的判定定理只需證明一個平面經(jīng)過另一個平面的垂直,證明平面即可;(2 )利用線面平行的判定定理,只需證明平面外的直線平行于平面內(nèi)的一條直線,證明即可.

試題解析:

(1)在直三棱柱中, 平面,因為平面,所以

, 平面,所以平面

平面,所以平面平面;

(2)因為,由(1)同理可得, 平面

又由(1)知, 平面

所以,

平面, 平面,

所以平面

【方法點晴】本題主要考查線面平行的判定定理、面面垂直的判定定理,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形垂直于正方形垂直于平面.且

(1)證明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項均為正數(shù)的數(shù)列的前n項和為滿足,,公比大于1的等比數(shù)列滿足, .

1求證數(shù)列是等差數(shù)列,并求其通項公式;

2,求數(shù)列的前n項和;

3)在(2)的條件下,若對一切正整數(shù)n恒成立求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x) (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和.

(1)k的值及f(x)的表達(dá)式;

(2)隔熱層修建多厚時,總費用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,其上下頂點分別為,.

(1)求橢圓的方程以及離心率;

(2)的坐標(biāo)為,過點的任意作直線與橢圓相交于兩點,設(shè)直線的斜率依次成等差數(shù)列,探究之間是否存在某種數(shù)量關(guān)系,若是請給出的關(guān)系式,并證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為[-1,5],部分對應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于的命題:

-1

0

4

5

1

2

2

1

①函數(shù)的極大值點為0,4;

②函數(shù)在[0,2]上是減函數(shù);

③如果當(dāng)時,的最大值是2,那么的最大值為4;

④當(dāng)時,函數(shù)有4個零點.

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為矩形,直線平面,,,點在棱上.

(1)求證:;

(2)若的中點,求異面直線所成角的余弦值;

(3)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率,左、右焦點分別為, ,點滿足: 在線段的中垂線上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若斜率為)的直線軸、橢圓順次相交于點、、,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 “一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀(jì)海上絲綢之路”的簡稱某市為了了解人們對“一帶一路”的認(rèn)知程度,對不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認(rèn)知程度高),現(xiàn)從參賽者中抽取了人,按年齡分成5組(第一組:,第二組,第三組:,第四組:,第五組:),得到如圖所示的頻率分布直方圖,已知第一組有6人

(1)求

(2)求抽取的人的年齡的中位數(shù)(結(jié)果保留整數(shù));

(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個體戶五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1-5組,從這5個按年齡分的組合5個按職業(yè)分的組中每組各選派1人參加知識競賽代表相應(yīng)組的成績,年齡組中1-5組的成績分別為93,96,97,94,90,職業(yè)組中1-5組的成績分別為93,98,94,95,90

i)分別求5個年齡組和5個職業(yè)組成績的平均數(shù)和方差;

ii)以上述數(shù)據(jù)為依據(jù),評價5個年齡組和5個職業(yè)組對“一帶一路”的認(rèn)知程度,并談?wù)勀愕母邢?/span>

查看答案和解析>>

同步練習(xí)冊答案