【題目】我國古代數(shù)學名著《孫子算經(jīng)》中有如下問題:今有三女,長女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會?意思是:一家出嫁的三個女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個女兒從娘家同一天走后,至少再隔多少天三人再次相會?假如回娘家當天均回夫家,若當?shù)仫L俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有

A. B. C. D.

【答案】C

【解析】小女兒、二女兒和大女兒回娘家的天數(shù)分別是33,25,20,小女兒和二女兒、小女兒和大女兒、二女兒和大女兒回娘家的天數(shù)分別是8,6,5,三個女兒同時回娘家的天數(shù)是1,所以有女兒在娘家的天數(shù)是:33+25+20-(8+6+5)+1=60

故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題:①在線性回歸模型中,相關指數(shù)表示解釋變量對于預報變量的貢獻率, 越接近于1,表示回歸效果越好;②兩個變量相關性越強,則相關系數(shù)的絕對值就越接近于1;③在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均減少0.5個單位;④對分類變量,它們的隨機變量的觀測值來說, 越小,“有關系”的把握程度越大.其中正確命題的個數(shù)是

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABCa=7,b=8,cosB= –

A;

AC邊上的高

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=logmm0m≠1),

I)判斷fx)的奇偶性并證明;

II)若m=,判斷fx)在(3,+∞)的單調(diào)性(不用證明);

III)若0m1,是否存在βα>0,使fx)在β]的值域為[logmmβ-1),logmα-1]?若存在,求出此時m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列滿足4Sn=(an+1)2
(1)求數(shù)列{an}的通項公式;
(2)設bn= , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(Ⅰ)求證:平面ABC1⊥平面A1C1CA;
(Ⅱ)設D是A1C1的中點,判斷并證明在線段BB1上是否存在點E,使DE∥平面ABC1;若存在,求三棱錐E﹣ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓心在y軸上,半徑為1,且過點(1,2)的圓的方程為( 。
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:①定義在上的函數(shù)滿足,則一定不是上的減函數(shù);

②用反證法證明命題“若實數(shù),滿足,則都為0”時,“假設命題的結論不成立”的敘述是“假設都不為0”;

③把函數(shù)的圖象向右平移個單位長度,所得到的圖象的函數(shù)解析式為;

④“”是“函數(shù)為奇函數(shù)”的充分不必要條件.

其中所有正確命題的序號為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩陣A的逆矩陣A﹣1=
(1)求矩陣A;
(2)求矩陣A﹣1的特征值以及屬于每個特征值的一個特征向量.

查看答案和解析>>

同步練習冊答案