【題目】圓心在y軸上,半徑為1,且過點(1,2)的圓的方程為( 。
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1

【答案】A
【解析】法1(直接法):設(shè)圓心坐標(biāo)為(0,b),
則由題意知 ,
解得b=2,故圓的方程為x2+(y﹣2)2=1.
故選A.
法2(數(shù)形結(jié)合法):由作圖根據(jù)點(1,2)到圓心的距離為1易知圓心為(0,2),
故圓的方程為x2+(y﹣2)2=1
故選A.
法3(驗證法):將點(1,2)代入四個選擇支,
排除B,D,又由于圓心在y軸上,排除C.
故選:A.
【考點精析】解答此題的關(guān)鍵在于理解圓的標(biāo)準(zhǔn)方程的相關(guān)知識,掌握圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項為an=log(n+1)(n+2)(n∈N*),我們把使乘積a1a2a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(0,2015]內(nèi)的所有“優(yōu)數(shù)”的和為(  )
A.1024
B.2012
C.2026
D.2036

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列是關(guān)于復(fù)數(shù)的類比推理:

①復(fù)數(shù)的加減法運(yùn)算可以類比多項式的加減法運(yùn)算法則;

②由實數(shù)絕對值的性質(zhì)|x|2=x2類比得到復(fù)數(shù)z的性質(zhì)|z|2=z2;

③已知a,b∈R,若a-b>0,則a>b類比得已知z1,z2∈C,若z1-z2>0,則z1>z2;

④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.

其中推理結(jié)論正確的是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《孫子算經(jīng)》中有如下問題:今有三女,長女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會?意思是:一家出嫁的三個女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個女兒從娘家同一天走后,至少再隔多少天三人再次相會?假如回娘家當(dāng)天均回夫家,若當(dāng)?shù)仫L(fēng)俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA米處理).

(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB;

(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點O在攝影愛好者與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動的任意時刻,攝影愛好者觀察彩桿MN的視角(設(shè)為)是否存在最大值?若存在,請求出取最大值時的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(sin(A-B),2cosA)=(1,cos(-B)),且=-sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對的角.
(Ⅰ)求角C的大。
(Ⅱ)若sinA+sinB=sinC,且 , 求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)對的序列為, , , , , ,( ),, ,…,則第70個數(shù)對是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)處的切線方程為,求的值;

(Ⅱ)討論方程的解的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點D,D1分別為AC,A1C1上的點.

(1)當(dāng)的值等于何值時,BC1∥平面AB1D1;

(2)若平面BC1D∥平面AB1D1,求的值.

查看答案和解析>>

同步練習(xí)冊答案