【題目】已知定義在上的偶函數(shù)滿足,且當(dāng)時, ,若在內(nèi)關(guān)于的方程恰有3個不同的實數(shù)根,則的取值范圍是 ( )

A. B. C. D.

【答案】C

【解析】,

,即,

∴ 函數(shù)f(x)的周期為4。

當(dāng)x[0,2]x[2,0],

,

f(x)是偶函數(shù),

f(x)loga(x+2)=0,f(x)=loga(x+2),

作出函數(shù)的圖象如圖所示

①當(dāng)0<a<1,函數(shù)g(x)=loga(x+2)單調(diào)遞減,此時兩函數(shù)的圖象只有1個交點,不滿足條件;

當(dāng)a>1,要使方程f(x)loga(x+2)=0恰有3個不同的實數(shù)根,則需函數(shù)f(x)g(x)=loga(x+2)的圖象有3個不同的交點,

則需滿足,,解得。

a的取值范圍是

答案:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) .

1)令,求的單調(diào)區(qū)間;

2)已知處取得極大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=2a,f′(2)=﹣b,其中常數(shù)a,b∈R. (Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程.
(Ⅱ)設(shè)g(x)=f′(x)ex . 求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對任意 恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC
(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足對任意的都有,且

(1)求數(shù)列的通項公式;

(2)設(shè)數(shù)列的前項和為,不等式對任意的正整數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市有一塊半徑為40m的半圓形O為圓心,AB為直徑綠化區(qū)域,現(xiàn)計劃對其進(jìn)行改建.在AB的延長線上取點D,使OD=80m,在半圓上選定一點C,改建后的綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為S m2. 設(shè)∠AOC=x rad.

(1)寫出S關(guān)于x的函數(shù)關(guān)系式S(x),并指出x的取值范圍;

(2)張強(qiáng)同學(xué)說:當(dāng)∠AOC=時,改建后的綠化區(qū)域面積S最大.張強(qiáng)同學(xué)的說法正確嗎?若不正確,請求出改建后的綠化區(qū)域面積S最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列結(jié)論的證法,再解決后面的問題:已知a1 , a2∈R,a1+a2=1,求證a12+a22
【證明】構(gòu)造函數(shù)f(x)=(x﹣a12+(x﹣a22
則f(x)=2x2﹣2(a1+a2x+a12+a22
=2x2﹣2x+a12+a22
因為對一切x∈R,恒有f(x)≥0.
所以△=4﹣8(a12+a22)≤0,從而得a12+a22 ,
(1)若a1 , a2 , …,an∈R,a1+a2+…+an=1,請寫出上述結(jié)論的推廣式;
(2)參考上述解法,對你推廣的結(jié)論加以證明.

查看答案和解析>>

同步練習(xí)冊答案