【題目】甲、乙、丙三人獨立地對某一技術難題進行攻關.甲能攻克的概率為 ,乙能攻克的概率為 ,丙能攻克的概率為 .
(1)求這一技術難題被攻克的概率;
(2)若該技術難題末被攻克,上級不做任何獎勵;若該技術難題被攻克,上級會獎勵a萬元.獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金a萬元;若只有2人攻克,則獎金獎給此二人,每人各得 萬元;若三人均攻克,則獎金獎給此三人,每人各得 萬元.設甲得到的獎金數為X,求X的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大;
(Ⅲ)在棱PC上是否存在一點F,使BF∥平面AEC?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx﹣ax,a∈R.
(1)當x=1時,函數f(x)取得極值,求a的值;
(2)當0<a< 時,求函數f(x)在區(qū)間[1,2]上的最大值;
(3)當a=﹣1時,關于x的方程2mf(x)=x2(m>0)有唯一實數解,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京時間3月10日,CBA半決賽開打,采用7局4勝制(若某對取勝四場,則終止本次比賽,并獲得進入決賽資格),采用2﹣3﹣2的賽程,遼寧男籃將與新疆男籃爭奪一個決賽名額,由于新疆隊常規(guī)賽占優(yōu),決賽時擁有主場優(yōu)勢(新疆先兩個主場,然后三個客場,再兩個主場),以下是總決賽賽程:
日期 | 比賽隊 | 主場 | 客場 | 比賽時間 | 比賽地點 |
17年3月10日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
17年3月12日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
17年3月15日 | 遼寧﹣新疆 | 遼寧 | 新疆 | 20:00 | 本溪 |
17年3月17日 | 遼寧﹣新疆 | 遼寧 | 新疆 | 20:00 | 本溪 |
17年3月19日 | 遼寧﹣新疆 | 遼寧 | 新疆 | 20:00 | 本溪 |
17年3月22日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
17年3月24日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
(1)若考慮主場優(yōu)勢,每個隊主場獲勝的概率均為 ,客場取勝的概率均為 ,求遼寧隊以比分4:1獲勝的概率;
(2)根據以往資料統(tǒng)計,每場比賽組織者可獲得門票收入50萬元(與主客場無關),若不考慮主客場因素,每個隊每場比賽獲勝的概率均為 ,設本次半決賽中(只考慮這兩支隊)組織者所獲得的門票收入為X,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長為a,M,N分別為A1B和AC上的點,A1M=AN= ,則MN與平面BB1C1C的位置關系為( )
A.相交
B.平行
C.垂直
D.不能確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線y=﹣x+1與橢圓 + =1(a>b>0)相交于A、B兩點.
①若橢圓的離心率為 ,焦距為2,求線段AB的長;
②若向量 與向量 互相垂直(其中O為坐標原點),當橢圓的離心率e∈[ , ]時,求橢圓的長軸長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①若 , 是第一象限角且 ,則 ;
②函數 在上是減函數;
③ 是函數 的一條對稱軸;
④函數 的圖象關于點 成中心對稱;
⑤設 ,則函數 的最小值是,其中正確命題的序號為 __________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是首項為19,公差為-2的等差數列,Sn為{an}的前n項和.
(1)求通項an及Sn;
(2)設{bn-an}是首項為1,公比為3的等比數列,求數列{bn}的通項公式及前n項和Tn.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com