【題目】給出下列命題:

①若 是第一象限角且 ,則

②函數(shù)上是減函數(shù);

是函數(shù) 的一條對稱軸;

④函數(shù) 的圖象關(guān)于點(diǎn) 成中心對稱;

⑤設(shè) ,則函數(shù) 的最小值是,其中正確命題的序號為 __________

【答案】③⑤

【解析】對于①,時, ,而,故①錯誤;對于②,上遞增,故②錯誤;對于③,時, , 的對稱軸,故③正確;對于④,時, 不是的對稱中心,故④錯誤;對于⑤,,設(shè)因?yàn)?/span> ,所以,則 , 上遞增,在 上遞減,因?yàn)?/span> 可得時, ,即函數(shù) 的最小值是,故⑤正確,故答案為③⑤.

方法點(diǎn)睛】本題主要通過對多個命題真假的判斷,綜合考查三角函數(shù)的單調(diào)性、三角函數(shù)的奇偶性、三角函數(shù)的圖象與性質(zhì),屬于難題.這種題型綜合性較強(qiáng),也是高考的命題熱點(diǎn),同學(xué)們往往因?yàn)槟骋惶幹R點(diǎn)掌握不好而導(dǎo)致“全盤皆輸”,因此做這類題目更要細(xì)心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點(diǎn)入手,然后集中精力突破較難的命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值為0,求實(shí)數(shù)a的值;
(2)證明:當(dāng)a=2時,不等式f(x)≥ ﹣e1x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人獨(dú)立地對某一技術(shù)難題進(jìn)行攻關(guān).甲能攻克的概率為 ,乙能攻克的概率為 ,丙能攻克的概率為
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級不做任何獎勵;若該技術(shù)難題被攻克,上級會獎勵a萬元.獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金a萬元;若只有2人攻克,則獎金獎給此二人,每人各得 萬元;若三人均攻克,則獎金獎給此三人,每人各得 萬元.設(shè)甲得到的獎金數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸.
(1)確定a與b的關(guān)系;
(2)若a≥0,試討論函數(shù)g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若

(1)求的值,并寫出函數(shù)的最小正周期(不需證明);

(2)是否存在正整數(shù),使得函數(shù)在區(qū)間內(nèi)恰有個零點(diǎn)?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=4 x的焦點(diǎn)為F,A、B為拋物線上兩點(diǎn),若 =3 ,O為坐標(biāo)原點(diǎn),則△AOB的面積為( )
A.8
B.4
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,則對于命題p:abcd∈(0,1)和命題q:a+b+c+d∈[e+e﹣1﹣2,e2+e﹣2﹣2)真假的判斷,正確的是( )
A.p假q真
B.p假q假
C.p真q真
D.p真q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】徐州市為加快新老城區(qū)的融合并進(jìn)一步緩解交通壓力,現(xiàn)經(jīng)過食品城至新城區(qū)(昆侖大道)和食品城至高速入口(迎賓大道),分別修建地鐵2號線和快速通道,如圖,已知兩條公路夾角為60°,為了便于施工擬在兩條公路之間的區(qū)域內(nèi)建一混凝土攪拌站P,并分別在兩條公路邊上建兩個中轉(zhuǎn)站MN (異于點(diǎn)A),要求PMPNMN=2(單位:千米).

(1)

(2)為多大時,使得混凝土攪拌站產(chǎn)生的噪聲對食品城的影響最小(即攪拌站與食品城的距離最遠(yuǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+m與函數(shù) 的圖象上至少存在一對關(guān)于x軸對稱的點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.
B.
C.
D.[2﹣ln2,2]

查看答案和解析>>

同步練習(xí)冊答案