【題目】已知關于的二項式的展開式的二項式系數(shù)之和為1024,常數(shù)項為180.

1)求的值;

2)求展開式中的無理項.(不需求項的表達式,指出無理項的序號即可)

【答案】1,.(2)第2項第4項第6項第8項第10

【解析】

1)根據(jù)二項式系數(shù)之和,先求出;再由二項展開式的通項,根據(jù)常數(shù)項為180,即可求出的值;

2)由不是整數(shù)時,二項展開式中對應的項為無理項;進而可求出結(jié)果.

1)由題意可知,,所以.

所以二項展開式的通項是.

可知當時,解得,表示常數(shù)項,

所以,解得.

2)當不是整數(shù)時,二項展開式中對應的項為無理項.

由于,所以取奇數(shù)1,3,57,9時即為所求.

此時對應的項分別是第2項第4項第6項第8項第10項,

即該二項展開式中,,,是無理項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,一輛汽車從市出發(fā)沿海岸一條直公路以的速度向東勻速行駛,汽車開動時,在市南偏東方向距且與海岸距離為的海上處有一快艇與汽車同時出發(fā),要把一份稿件送給這輛汽車的司機.

1)快艇至少以多大的速度行駛才能把稿件送到司機手中?

2)在(1)的條件下,求快艇以最小速度行駛時的行駛方向與所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,由一塊扇形空地,其中米,計劃在此扇形空地區(qū)域為學生建燈光籃球運動場,區(qū)域內(nèi)安裝一批照明燈,點、選在線段上(點、分別不與點、重合),且.

1)若點在距離米處,求點之間的距離;

2)為了使運動場地區(qū)域最大化,要求面積盡可能的小,記,請用表示的面積,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個單位長度,再向下平移個單位長度,得到函數(shù)的圖像.

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)在銳角中,角的對邊分別為,若,,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①,②復平面上表示的點在直線上,③.這三個條件中任選一個,補充在下面問題中,求出滿足條件的復數(shù),以及.已知復數(shù),______.若,求復數(shù),以及.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù),),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)已知直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為12,3的人數(shù)分別為33, 4,現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.

1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;

2)設X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)若函數(shù)的圖象與函數(shù)的圖象相切,求的值;

2)設函數(shù). 若存在,,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有7位歌手1至7號參加一場歌唱比賽, 550名大眾評委現(xiàn)場投票決定歌手名次, 根據(jù)年齡將大眾評委分為5組, 各組的人數(shù)如下:

組別

A

B

C

D

E

人數(shù)

50

100

200

150

50

為了調(diào)查大眾評委對7位歌手的支持狀況, 現(xiàn)用分層抽樣方法從各組中抽取若干評委, 其中從B組中抽取了6人. 請將其余各組抽取的人數(shù)填入下表.

中, 若A, C兩組被抽到的評委中各有2人支持1號歌手, 現(xiàn)從這兩組被抽到的評委中分別任選1人, 求這2人都支持1號歌手的概率.

查看答案和解析>>

同步練習冊答案
    • <li id="8srks"><nobr id="8srks"></nobr></li>

      組別

      A

      B

      C

      D

      E

      人數(shù)

      50

      100

      200

      150

      50

      抽取人數(shù)

      6