【題目】某地發(fā)生地質(zhì)災害,使當?shù)氐淖詠硭艿搅宋廴,某部門對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì).已知每投放質(zhì)量為m的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足,其中,當藥劑在水中釋放的濃度不低于4(毫克/升)時稱為有效凈化;當藥劑在水中釋放的濃度不低于4(毫克/升)且不高于10(毫克/升)時稱為最佳凈化.

(1)如果投放的藥劑質(zhì)量為m=4,試問自來水達到有效凈化一共可持續(xù)幾天?

(2)如果投放的藥劑質(zhì)量為m,為了使在7天(從投放藥劑算起包括7天)之內(nèi)的自來水達到最佳凈化,試確定應該投放的藥劑質(zhì)量m的最小值.

【答案】(1)16天(2)

【解析】

(1)由題意首先得到該藥劑在水中釋放的濃度的解析式,然后求解不等式即可確定自來水達到有效凈化一共可持續(xù)的天數(shù).

2)由確定各段的單調(diào)性,求出值域,然后將原問題轉(zhuǎn)化為恒成立的問題可得m的最小值.

1)由題意,當藥劑質(zhì)量為m=4,所以

時,顯然符合題意.
x4,解得,

綜上,

所以自來水達到有效凈化一共可持續(xù)16天.
2)由,得:

在區(qū)間(04]上單調(diào)遞增,即
在區(qū)間(4,7]上單調(diào)遞減,即
綜上,
為使恒成立,只要即可,

所以應該投放的藥劑質(zhì)量m的最小值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上單調(diào)遞減,求實數(shù)的取值范圍;

2)是否存在實數(shù),使得上的值域恰好是?若存在,求出實數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點O是四邊形內(nèi)一點,判斷結(jié)論:,則該四邊形必是矩形,且O為四邊形的中心是否正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在空間四邊形中, ,,,且平面平面.

(1)求證:;

(2)若直線與平面所成角的余弦值為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中四邊形ABCD為矩形,E,F分別為PA,PD的中點,在此幾何體中,給出下面4個結(jié)論:

直線BE與直線CF異面;直線BE與直線AF異面;直線平面PBC;平面平面PAD

其中正確的結(jié)論個數(shù)為  

A. 4

B. 3

C. 2

D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列函數(shù)的奇偶性:

1f(x)|x2||x2|;

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知長度為的線段的兩個端點分別在軸和軸上運動,動點滿足,設動點的軌跡為曲線.

(1)求曲線的方程;

(2)過點且斜率不為零的直線與曲線交于兩點、,在軸上是否存在定點,使得直線的斜率之積為常數(shù).若存在,求出定點的坐標以及此常數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:

(1)能否出現(xiàn)ACBC的情況?說明理由;

(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I) 當時,求函數(shù)的單調(diào)區(qū)間;

(II) 當時,恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案