【題目】為了了解游客的情況,以便制定相應(yīng)的策略,在某月中隨機抽取甲、乙兩個景點各10天的游客數(shù),畫出莖葉圖如圖:

1)若景點甲中的數(shù)據(jù)的中位數(shù)是125,景點乙中的數(shù)據(jù)的平均數(shù)是124,求x,y的值;

2)若將圖中景點甲中的數(shù)據(jù)作為該景點較長一段時期內(nèi)的樣本數(shù)據(jù).今從這段時期中任取4天,記其中游客數(shù)超過120人的天數(shù)為,求概率;

3)現(xiàn)從如圖所示的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點中各取1天),記其中游客數(shù)不低于115且不高于125人的天數(shù)為,求的分布列和期望.

【答案】1;(2;(3)分布列見解析,.

【解析】

110位數(shù)中位數(shù)為第5位和第6位數(shù)之和除以2,找出數(shù)值計算即可;

2)由題意判斷該分布符合二項分布,結(jié)合二項分布公式求解即可;

3)由題分別求出景點甲中被選出的概率為,在景點乙中被選出的概率為,判斷知的所有可能的取值為0,1,2,由相互獨立事件的乘法公式計算求出對應(yīng)概率,列出分布列,即可求出期望

1)景點甲中的數(shù)據(jù)的中位數(shù)是125,可得,景點乙中的數(shù)據(jù)的平均數(shù)是124,可得,解得;

2)由題意知:因為景點甲的每一天的游客數(shù)超過120人的概率為

任取4天,即是進行了4次獨立重復(fù)試驗,其中有次發(fā)生,

故隨機變量服從二項分布,則

3)從圖中看出:景點甲的數(shù)據(jù)中符合條件的只有1天,景點乙的數(shù)據(jù)中符合條件的有4天,所以在景點甲中被選出的概率為,在景點乙中被選出的概率為.

由題意知:的所有可能的取值為0,1,2.

,

所以得分布列為:

0

1

2

P

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于正整數(shù),如果個整數(shù)滿足,

,則稱數(shù)組的一個正整數(shù)分拆”.均為偶數(shù)的正整數(shù)分拆的個數(shù)為均為奇數(shù)的正整數(shù)分拆的個數(shù)為.

()寫出整數(shù)4的所有正整數(shù)分拆”;

()對于給定的整數(shù),設(shè)的一個正整數(shù)分拆,且,求的最大值;

()對所有的正整數(shù),證明:;并求出使得等號成立的的值.

(:對于的兩個正整數(shù)分拆,當(dāng)且僅當(dāng)時,稱這兩個正整數(shù)分拆是相同的.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年國際籃聯(lián)籃球世界杯將于2019831日至915日在中國的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳國際籃聯(lián)籃球世界杯,某大學(xué)從全校學(xué)生中隨機抽取了120名學(xué)生,對是否會收看該國際籃聯(lián)籃球世界杯賽事的情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

會收看

不會收看

男生

60

20

女生

20

20

1)根據(jù)上表說明,能否有99%的把握認為是否會收看該國際籃聯(lián)籃球世界杯賽事與性別有關(guān)?

2)甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球3次均未命中的概率為.

i)求乙投球的命中率;

ii)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

附:,其中,

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高中生作文成績與課外閱讀量之間的關(guān)系,某研究機構(gòu)隨機抽取了100名高中生,根據(jù)問卷調(diào)查,得到以下數(shù)據(jù):

作文成績優(yōu)秀

作文成績一般

總計

課外閱讀量較大

35

20

55

課外閱讀量一般

15

30

45

總計

50

50

100

1)根據(jù)列聯(lián)表,能否有99.5%的把握認為課外閱讀量的大小與作文成績優(yōu)秀有關(guān);

2)若用分層抽樣的方式從課外閱讀量一般的高中生中選取了6名高中生,再從這6名高中生中隨機選取2名進行面談,求面談的高中生中至少有1名作文成績優(yōu)秀的概率.

附:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)為何值時,軸為曲線的切線;

2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時,討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)(每年農(nóng)歷五月初五),是中國傳統(tǒng)節(jié)日,有吃粽子的習(xí)俗.某超市在端午節(jié)這一天,每售出kg粽子獲利潤元,未售出的粽子每kg虧損.根據(jù)歷史資料,得到銷售情況與市場需求量的頻率分布表,如下表所示.該超市為今年的端午節(jié)預(yù)購進了kg粽子.(單位:kg)表示今年的市場需求量,(單位:元)表示今年的利潤.

市場需求量(kg

頻率

0.1

0.2

0.3

0.25

0.15

1)將表示為的函數(shù);

2)在頻率分布表的市場需求量分組中,以各組的區(qū)間中間值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面為菱形的四棱柱中,平面.

1)證明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若方程沒有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)當(dāng), 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案