【題目】已知橢圓的離心率為,以橢圓的2個(gè)焦點(diǎn)與1個(gè)短軸端點(diǎn)為頂點(diǎn)的三角形的面積為2。

(1)求橢圓的方程;

(2)如圖,斜率為k的直線(xiàn)l過(guò)橢圓的右焦點(diǎn)F,且與橢圓交與A,B兩點(diǎn),以線(xiàn)段AB為直徑的圓截直線(xiàn)x=1所得的弦的長(zhǎng)度為,求直線(xiàn)l的方程。

【答案】(1);(2).

【解析】

(1)根據(jù)橢圓的離心率,三角形的面積建立方程,結(jié)合a2b2+c2,即可求橢圓C的方程;

(2)聯(lián)立直線(xiàn)方程與橢圓聯(lián)立,利用韋達(dá)定理表示出結(jié)合弦的長(zhǎng)度為,即可求斜率k的值,從而求得直線(xiàn)方程。

解:(1)由橢圓的離心率為,

.

, ,所以橢圓方程為

(2)解:設(shè)直線(xiàn),,中點(diǎn)

聯(lián)立方程

.

所以,

點(diǎn)到直線(xiàn)的距離為

由以線(xiàn)段為直徑的圓截直線(xiàn)所得的弦的長(zhǎng)度為

,所以

解得,所以直線(xiàn)的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x2+2alnx.

(1)若函數(shù)fx)的圖象在(2,f2))處的切線(xiàn)斜率為1,求實(shí)數(shù)a的值;

(2)若函數(shù)[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了提高職工的健身意識(shí),鼓勵(lì)大家加入健步運(yùn)動(dòng),要求200名職工每天晚上9:30上傳手機(jī)計(jì)步截圖,對(duì)于步數(shù)超過(guò)10000的予以獎(jiǎng)勵(lì).1為甲乙兩名職工在某一星期內(nèi)的運(yùn)動(dòng)步數(shù)統(tǒng)計(jì)圖,圖2為根據(jù)這星期內(nèi)某一天全體職工的運(yùn)動(dòng)步數(shù)做出的頻率分布直方圖.

1)在這一周內(nèi)任選兩天檢查,求甲乙兩人兩天全部獲獎(jiǎng)的概率;

2)請(qǐng)根據(jù)頻率分布直方圖,求出該天運(yùn)動(dòng)步數(shù)不少于15000的人數(shù),并估計(jì)全體職工在該天的平均步數(shù);

3)如果當(dāng)天甲的排名為第130名,乙的排名為第40名,試判斷做出的是星期幾的頻率分布直方圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷(xiāo),凡在該超市購(gòu)物滿(mǎn)元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:一個(gè)袋子裝有只形狀和大小均相同的玻璃球,其中兩只是紅色,三只是綠色,顧客從袋子中一次摸出兩只球,若兩只球都是紅色,則獎(jiǎng)勵(lì)元;共兩只球都是綠色,則獎(jiǎng)勵(lì)元;若兩只球顏色不同,則不獎(jiǎng)勵(lì).

(1)求一名顧客在一次摸獎(jiǎng)活動(dòng)中獲得元的概率;

(2)記為兩名顧客參與該摸獎(jiǎng)活動(dòng)獲得的獎(jiǎng)勵(lì)總數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其焦點(diǎn)與雙曲線(xiàn)的焦點(diǎn)重合,且橢圓的短軸的兩個(gè)端點(diǎn)與其一個(gè)焦點(diǎn)構(gòu)成正三角形.

(1)求橢圓的方程;

(2)過(guò)雙曲線(xiàn)的右頂點(diǎn)作直線(xiàn)與橢圓交于不同的兩點(diǎn).設(shè),當(dāng)為定值時(shí),求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向右平移個(gè)單位后得到函數(shù)的圖象,則( )

A. 圖象關(guān)于直線(xiàn)對(duì)稱(chēng) B. 圖象關(guān)于點(diǎn)中心對(duì)稱(chēng)

C. 在區(qū)間單調(diào)遞增 D. 在區(qū)間上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) aRe為自然對(duì)數(shù)的底數(shù)),,其中x=0處的切線(xiàn)方程為y=bx.

1)求a,b的值;

2)求證:;

3)求證:有且僅有兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)(為參數(shù),實(shí)數(shù)),曲線(xiàn)(為參數(shù),實(shí)數(shù)).在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線(xiàn)交于兩點(diǎn),與交于兩點(diǎn).當(dāng)時(shí),;當(dāng)時(shí),.

(Ⅰ)求,的值及曲線(xiàn) 極坐標(biāo)方程;

(Ⅱ)求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 稿酬所得以個(gè)人每次取得的收入,定額或定率減除規(guī)定費(fèi)用后的余額為應(yīng)納稅所得額,每次收入不超過(guò)4000元,定額減除費(fèi)用800元;每次收入在4000元以上的,定率減除20%的費(fèi)用適用20%的比例稅率,并按規(guī)定對(duì)應(yīng)納稅額減征30%,計(jì)算公式為:

(1)每次收入不超過(guò)4000元的:應(yīng)納稅額=(每次收入額-800)×20%×(1-30%)

(2)每次收入在4000元以上的:應(yīng)納稅額=每次收入額×(1-20%)×20%×(1-30%)已知某人出版一份書(shū)稿,共納稅280元,這個(gè)人應(yīng)得稿費(fèi)(扣稅前)為

查看答案和解析>>

同步練習(xí)冊(cè)答案