【題目】以下四個(gè)結(jié)論,正確的是( )
①質(zhì)檢員從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,每間隔15分鐘抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;
②在回歸直線方程中,當(dāng)變量每增加一個(gè)單位時(shí),變量增加0.13個(gè)單位;
③在頻率分布直方圖中,所有小矩形的面積之和是1;
④對于兩個(gè)分類變量與,求出其統(tǒng)計(jì)量的觀測值,觀測值越大,我們認(rèn)為“與有關(guān)系”的把握程度就越大.
A.②④B.②③C.①③D.③④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上的最大值為9,最小值為1,記;
(1)求實(shí)數(shù)的值;
(2)若不等式成立,求實(shí)數(shù)的取值范圍;
(3)定義在上的函數(shù),設(shè),其中將區(qū)間任意劃分成個(gè)小區(qū)間,如果存在一個(gè)常數(shù),使得和式恒成立,則稱函數(shù)為在上的有界變差函數(shù),試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,其中.
(1)當(dāng)時(shí),求函數(shù)單調(diào)遞增區(qū)間;
(2)求函數(shù)的圖象在點(diǎn)處的切線方程;
(3)是否存在實(shí)數(shù)的值,使得在上有最大值或最小值,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,是等腰三角形,且.四邊形ABCD是直角梯形,,,,,.
(1)求證:平面PDC.
(2)請?jiān)趫D中所給的五個(gè)點(diǎn)P,A,B,C,D中找出兩個(gè)點(diǎn),使得這兩點(diǎn)所在直線與直線BC垂直,并給出證明.
(3)當(dāng)平面平面ABCD時(shí),求直線PC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整,調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額,依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
… | … | … | … | … | … |
某稅務(wù)部門在某公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
(1)若某員工2月的工資、薪金等稅前收入為7500元時(shí),請計(jì)算一下調(diào)整后該員工的實(shí)際收入比調(diào)整前增加了多少?
(2)現(xiàn)從收入在及的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),設(shè)隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界互聯(lián)網(wǎng)大會是由中國倡導(dǎo)并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會,大會旨在搭建中國與世界互聯(lián)互通的國際平臺和國際互聯(lián)網(wǎng)共享共治的中國平臺,讓各國在爭議中求共識在共識中謀合作在合作中創(chuàng)共贏.2019年10月20日至22日,第六屆世界互聯(lián)網(wǎng)大會如期舉行,為了大會順利召開,組委會特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)這次大會志愿者主要通過現(xiàn)場報(bào)名和登錄大會官網(wǎng)報(bào)名,即現(xiàn)場和網(wǎng)絡(luò)兩種方式報(bào)名調(diào)查.這100位志愿者的報(bào)名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過計(jì)算說明能
否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為“選擇哪種報(bào)名方式與性別有關(guān)系”?
男性 | 女性 | 總計(jì) | |
現(xiàn)場報(bào)名 | 50 | ||
網(wǎng)絡(luò)報(bào)名 | 31 | ||
總計(jì) | 50 |
參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,其中.
(1)當(dāng)時(shí),寫出函數(shù)的單調(diào)區(qū)間(不要求證明);
(2)若對于任意的,均有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com