【題目】如圖,在四棱錐P-ABCD中,是等腰三角形,且.四邊形ABCD是直角梯形,,,,.

1)求證:平面PDC.

2)請在圖中所給的五個點PA,B,C,D中找出兩個點,使得這兩點所在直線與直線BC垂直,并給出證明.

3)當(dāng)平面平面ABCD時,求直線PC與平面PAB所成角的正弦值.

【答案】1)詳見解答;(2,證明見解答;(3.

【解析】

1)由已知,即可證明結(jié)論;

2)根據(jù)已知條件排除,只有可能與垂直,根據(jù)已知可證

3)利用垂直關(guān)系,建立空間直角坐標系,求出坐標和平面PAB的法向量,即可求解.

1平面平面,

平面;

2,證明如下:

中點,連,

,

,,

平面平面,

平面,;

3)平面平面ABCD,平面平面ABCD,

平面平面,

.四邊形ABCD是直角梯形,,,

,,

為坐標原點,以,過點與平行的直線分別為軸,

建立空間直角坐標系,則,

設(shè)平面的法向量為,

,即,

,令,則

平面一個法向量為,

設(shè)直線PC與平面PAB所成角為

,

直線直線PC與平面PAB所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線l與曲線C交于不同的兩點A,B.

1)求曲線C的參數(shù)方程;

2)若點P為直線與x軸的交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是(

A.命題,則的逆否命題為,則

B.命題,是假命題

C.若命題均為假命題,則命題為真命題

D.是定義在R上的函數(shù),則是奇函數(shù)的必要不允分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考最大的特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這科中自由選擇三門科目作為選考科目.某研究機構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),覺得從某學(xué)校高一年級的名學(xué)生中隨機抽取男生,女生各人進行模擬選科.經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多.

1)請完成下面的列聯(lián)表;

2)估計有多大把握認為選擇全理與性別有關(guān),并說明理由;

3)現(xiàn)從這名學(xué)生中已經(jīng)選取了男生名,女生名進行座談,從中抽取名代表作問卷調(diào)查,求至少抽到一名女生的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個結(jié)論,正確的是(

①質(zhì)檢員從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,每間隔15分鐘抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;

②在回歸直線方程中,當(dāng)變量每增加一個單位時,變量增加0.13個單位;

③在頻率分布直方圖中,所有小矩形的面積之和是1;

④對于兩個分類變量,求出其統(tǒng)計量的觀測值,觀測值越大,我們認為有關(guān)系的把握程度就越大.

A.②④B.②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年上半年我國多個省市暴發(fā)了非洲豬瘟疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業(yè)和散戶防控疫情,擴大生產(chǎn);另一方面積極向多個國家開放豬肉進口,擴大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場形勢,決定響應(yīng)政府號召,擴大生產(chǎn)決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系進行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計如下表:

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究員甲根據(jù)以上數(shù)據(jù)認為具有線性回歸關(guān)系,請幫他求出關(guān)于的線.性回歸方程(保留小數(shù)點后兩位有效數(shù)字)

2)研究員乙根據(jù)以上數(shù)據(jù)得出的回歸模型:.為了評價兩種模型的擬合效果,請完成以下任務(wù):

①完成下表(計算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點的殘差);

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估計值

殘差

模型乙

估計值

3.2

2.4

2

1.76

1.4

殘差

0

0

0

0.14

0.1

②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達到1萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達到1.2萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)

參考公式:.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,EM,N分別是BC,BB1,A1D的中點.

1)證明:MN∥平面C1DE;

2)求點C到平面C1DE的距離.

查看答案和解析>>

同步練習(xí)冊答案