【題目】在△ABC中,A、B、C的對邊分別是a,b,c,且bcosB是acosC,ccosA的等差中項,則角B=

【答案】
【解析】解:∵bcosB是acosC,ccosA的等差中項, ∴2bcosB=acosC+ccosA,
由正弦定理可得2sinBcosB=sinAcosC+sinCcosA,
即2sinBcosB=sin(A+C)=sinB,
又∵sinB>0,上式兩邊同除以sinB可得cosB= ,
∵0<B<π,∴B=
所以答案是:
【考點精析】本題主要考查了等差數(shù)列的性質(zhì)的相關(guān)知識點,需要掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上的點到兩個焦點的距離之和為,短軸長為,直線與橢圓交于兩點.

1求橢圓的方程;

2若直線與圓相切,探究是否為定值,如果是定值,請求出該定值;如果不是定值,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)( )的最小正周期是π,若其圖象向右平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(
A.關(guān)于點 對稱
B.關(guān)于點 對稱
C.關(guān)于直線 對稱
D.關(guān)于直線 對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時的x值
(2)求f(x)的單調(diào)減區(qū)間
(3)若x∈[﹣ ]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有零點,求實數(shù)的取值范圍;

(2)證明:當時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和圓

(1)判斷圓和圓的位置關(guān)系;

(2)過圓的圓心作圓的切線,求切線的方程;

(3)過圓的圓心作動直線交圓于A,B兩點.試問:在以AB為直徑的所有圓中,是否存在這樣的圓,使得圓經(jīng)過點?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)來臨,有農(nóng)民工兄弟、、、四人各自通過互聯(lián)網(wǎng)訂購回家過年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若、、獲得火車票的概率分別是,其中,又成等比數(shù)列,且、兩人恰好有一人獲得火車票的概率是.

(1)求的值;

(2)若、是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設(shè)表示、能夠回家過年的人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c. (Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.

查看答案和解析>>

同步練習(xí)冊答案