【題目】已知拋物線:和直線:,是直線上一點,過點做拋物線的兩條切線,切點分別為,,是拋物線上異于,的任一點,拋物線在處的切線與,分別交于,,則外接圓面積的最小值為______.
【答案】
【解析】
設(shè)三個切點分別為,求出三條切線方程,三條切線方程分別聯(lián)立求出坐標(biāo),點在直線上,得到關(guān)系,求出,進(jìn)而求出,設(shè)三角形外接圓半徑為,利用,求出的解析式,根據(jù)其特征,求出最小值.
設(shè)三個切點分別為,
若在點處的切線斜率存在,
設(shè)方程為與聯(lián)立,
得,,
即,
所以切線方程為 ①
若在點的切線斜率不存在,則,
切線方程為滿足①方程,
同理切線的方程分別為,
,聯(lián)立方程,
,解得,即
同理,,
,
設(shè)外接圓半徑為,
,
,
時取等號,
點在直線,
,
當(dāng)且僅當(dāng)或時等號成立,
此時外接圓面積最小為.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復(fù)圓五個階段,月食的初虧發(fā)生在19時48分,20時51分食既,21時29分食甚,22時07分生光,23時11分復(fù)圓.月全食伴隨有藍(lán)月亮和紅月亮,全食階段的“紅月亮”在食既時刻開始,生光時刻結(jié)束.小明準(zhǔn)備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間不超過30分鐘的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為萬元,每生產(chǎn)千件需另投入萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=3sin(﹣3x)﹣2的圖象向右平移個單位長度得到函數(shù)g(x)的圖象,若g(x)在區(qū)間[,θ]上的最大值為1,則θ的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面為等腰梯形,,,,丄底面.
(1)證明:平面平面;
(2)過的平面交于點,若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最大值;
(2)若函數(shù)與有相同極值點.
①求實數(shù)的值;
②若對于(為自然對數(shù)的底數(shù)),不等式恒成立,
求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com