【題目】已知兩個命題p:x∈R,sinx+cosx>m恒成立,q:x∈R,y=(2m2﹣m)x為增函數(shù).若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
【答案】解:由題意若p∨q為真命題,p∧q為假命題,可得,命題p和命題q一個為真命題,另一個為假命題. 若p是真命題,:x∈R,sinx+cosx>m恒成立,可得 >m恒成立,即 m<﹣ ,故實數(shù)m的取值范圍為(﹣∞,﹣ ).
若命題q是真命題,x∈R,y=(2m2﹣m)x為增函數(shù),則有2m2﹣m>1,
解得 m>1,或m< .
當p真q假時,實數(shù)m的取值范圍為:;
當p假q真時,實數(shù)m的取值范圍為:[﹣ ,﹣ )∪(1,+∞),
綜上,所求的實數(shù)m的取值范圍為:[﹣ ,﹣ )∪(1,+∞)
【解析】由題意可得,命題p和命題q一個為真命題,另一個為假命題.先求得當p真q假時,實數(shù)m的取值范圍,以及當p假q真時,實數(shù)m的取值范圍,再把這兩個范圍取并集,即得所求.
【考點精析】認真審題,首先需要了解命題的真假判斷與應用(兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命題p:log2[g(x)]≥1是假命題.求x的取值范圍;
(2)若命題q:x∈(﹣∞,3).命題r:x滿足f(x)<0或g(x)<0為真命題.¬r是¬q的必要不充分條件,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓錐和圓柱的組合體(它們的底面重合),圓錐的底面圓半徑為, 為圓錐的母線, 為圓柱的母線, 為下底面圓上的兩點,且, , .
(1)求證:平面平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)的極值點的個數(shù);
(Ⅱ)若函數(shù)的圖象與函數(shù)的圖象有兩個不同的交點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=aex﹣x﹣1,a∈R.
(Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈(0,+∞)時,f(x)>0恒成立,求a的取值范圍;
(Ⅲ)求證:當x∈(0,+∞)時,ln > .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過、,圓心在直線上,過點,且斜率為的直線交圓相交于、兩點.
(Ⅰ)求圓的方程;
(Ⅱ)(i)請問是否為定值.若是,請求出該定值,若不是,請說明理由;
(ii)若為坐標原點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點是圓上的任意一點,設為該圓的圓心,并且線段的垂直平分線與直線交于點.
(1)求點的軌跡方程;
(2)已知兩點的坐標分別為, ,點是直線上的一個動點,且直線分別交(1)中點的軌跡于兩點(四點互不相同),證明:直線恒過一定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直角坐標系中,曲線與軸負半軸交于點,直線與相切于, 為上任意一點, 為在上的射影, 為的中點.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)軌跡與軸交于,點為曲線上的點,且, ,試探究三角形的面積是否為定值,若為定值,求出該值;若非定值,求其取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com