設(shè)橢圓的右焦點(diǎn)為,直線 軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(,為直徑的兩個(gè)端點(diǎn)),求的最大值.

解:(I)由題設(shè)知,,,………………………………2分
,得.…………………………………4分
解得.所以橢圓的方程為.………………………………………6分
(Ⅱ)解法1:設(shè)圓的圓心為,
 
.……………………………………………………………9分
設(shè)是橢圓上一點(diǎn),則
所以. ……………………………………………12分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202835425727.png" style="vertical-align:middle;" />,所以當(dāng)時(shí),取得最大值12.
所以的最大值為11.……………………………………………………………………15分
解法2:設(shè)點(diǎn),所以,可得
 
.…
因?yàn)辄c(diǎn)在圓上,所以,即
又因?yàn)辄c(diǎn)在橢圓上,所以,即
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202835909673.png" style="vertical-align:middle;" />,所以當(dāng)時(shí),
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓與曲線有公共點(diǎn),則橢圓的離心率的取值范圍是_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知過點(diǎn)D(0,-2)作拋物線C1=2py(p>0)的切線l,切點(diǎn)A在第二象限.
(Ⅰ)求點(diǎn)A的縱坐標(biāo);
(Ⅱ)若離心率為的橢圓(a>b>0)恰好經(jīng)過點(diǎn)A,設(shè)直線l交橢圓的另一點(diǎn)為B,記直線l,OA,OB的斜率分別為k,k1,k2,若k1+2k2=4k,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示, 底面直徑為的圓柱被與底面成的平面所截,其截口是一個(gè)橢圓,則這個(gè)橢圓的離心率為               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點(diǎn)為F,橢圓C的離心率為,是它們的一個(gè)交點(diǎn),且
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知,點(diǎn)A,B為橢圓上的兩點(diǎn),且弦AB不平行于對(duì)稱軸,的中點(diǎn),試探究是否為定值,若不是,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如題21圖,已知離心率為的橢圓過點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線交橢圓C于不同的兩點(diǎn)A、B。
(1)求面積的最大值;
(2)證明:直線MA、MB與x軸圍成一個(gè)等腰三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓上一點(diǎn)P到它的右準(zhǔn)線的距離為10, 則點(diǎn)P到它的左焦點(diǎn)的距離是(   )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知拋物線的準(zhǔn)線為,焦點(diǎn)為F,的圓心在軸的正半軸上,且與軸相切,過原點(diǎn)O作傾斜角為的直線,交于點(diǎn)A,交于另一點(diǎn)B,且AO=OB=2.
(1)求和拋物線C的方程;
(2)若P為拋物線C上的動(dòng)點(diǎn),求的最小值;
(3)過上的動(dòng)點(diǎn)Q向作切線,切點(diǎn)為S,T,求證:直線ST恒過一個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓Gy2=1.過點(diǎn)(m,0)作圓x2y2=1的切線l交橢圓GA,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案