【題目】已知函數f(x)=2cosx+sin2x,則f(x)的最小值是__________.
【答案】
【解析】
由題意可得T=2π是f(x)的一個周期,問題轉化為f(x)在[0,2π)上的最小值,求導數計算極值和端點值,比較可得.
由題意可得T=2π是f(x)=2cosx+sin2x的一個周期,
故只需考慮2cosx+sin2x在[0,2π)上的值域,
先來求該函數在[0,2π)上的極值點,
求導數可得f′(x)=-2sinx+2cos2x
=-2sinx+2(1﹣2sin2x)=-2(2sinx-1)(sinx+1),
令f′(x)=0可解得sinx=或sinx=1,
可得此時x=,或;
∴y=2sinx+sin2x的最小值只能在點x=,或和邊界點x=0中取到,
計算可得f()=,f()=,f()=﹣,f(0)=2,
∴函數的最小值為﹣,
故答案為:.
科目:高中數學 來源: 題型:
【題目】若正弦型函數有如下性質:最大值為,最小值為;相鄰兩條對稱軸間的距離為.
(I)求函數解析式;
(II)當時,求函數的值域.
(III)若方程在區(qū)間上有兩個不同的實根,求實數的取值范
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有關于的一元二次方程.
(Ⅰ)若是從四個數中任取的一個數,是從三個數中任取的一個數,求上述方程有實根的概率.
(Ⅱ)若是從區(qū)間任取的一個數,是從區(qū)間任取的一個數,求上述方程有實根的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產甲、乙兩種產品所得利潤分別為和(萬元),它們與投入資金(萬元)的關系有如下公式:,,今將200萬元資金投入生產甲、乙兩種產品,并要求對甲、乙兩種產品的投入資金都不低于25萬元.
(Ⅰ)設對乙種產品投入資金(萬元),求總利潤(萬元)關于的函數關系式及其定義域;
(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,;
(1)寫出函數的最小正周期;
(2)請在下面給定的坐標系上用“五點法”畫出函數在區(qū)間的簡圖;
(3)指出該函數的圖象可由的圖象經過怎樣的平移和伸縮變換得到?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設的圖像與y軸交點的縱坐標為1,在y軸右側的第一個最大值和最小值分別為和.
(1)求函數的解析式:
(2)將函數圖像上所有點的橫坐標縮小原來的(縱坐標不變),再將所得圖像沿x軸正方向平移個單位,得到函數的圖像,求函數的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com